Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

C-Alkylation compounds

Alkylation of enamines may lead to the formation of N-alkylated product, which on heating is converted to C-alkyl compound (This rearrangement is common with allylic halide, alkyl halide or a-haloacetic ester. [Pg.220]

Methylation of aniline forms a range of products varying from N-alkylated to C-alkylated compounds. ALPOs and substituted ALPOs facilitate N-alkylation whereas ZSM-5 catalyse both C- and N-alkylations. ZSM-5 catalyst forms only mono methylated products. Both mono and di methylated products are formed with SAPOs and ALPOs. KY and CsY catalyse only mono methyl aniline formation. Conversions are high with ZSM-5, KY and CsY. Mechanism of reaction is proposed. [Pg.637]

This phenomenon is discernible also during acylation of ketone enolates. The results of acylation of the bromomagnesium salt, generated by conjugate addition of Grignard reagent to benzalacetone (149), indicate a great enhancement of the 0-alkylation product fraction. This is accompanied by depletion of the C-alkylated compound when HMPT is added. [Pg.45]

Chemoselective C-alkylation of the highly acidic and enolic triacetic acid lactone 104 (pAl, = 4.94) and tetronic acid (pA, = 3.76) is possible by use of DBU[68]. No 0-alkylation takes place. The same compound 105 is obtained by the regioslective allylation of copper-protected methyl 3,5-dioxohexano-ate[69]. It is known that base-catalyzed alkylation of nitro compounds affords 0-alkylation products, and the smooth Pd-catalyzed C-allylation of nitroalkanes[38.39], nitroacetate[70], and phenylstilfonylnitromethane[71] is possible. Chemoselective C-allylation of nitroethane (106) or the nitroacetate 107 has been applied to the synthesis of the skeleton of the ergoline alkaloid 108[70]. [Pg.305]

A/-sulfonated ayiridines have also been used in Friedel-Crafts reactions (qv) (63). The successful C-alkylation of the heteroaromatic compounds indole (qv) [120-72-9] (64—66) and thiophene [110-02-1] (67) with a2itidines has also been reported ... [Pg.3]

Dimethylsulfonium phenacylide (574) underwent C-alkylation with a-chloronitroso compounds such as (575). The intermediate (576) immediately cyclized to the isoxazoline (577). With a more basic ylide such as dimethylsulfonium methoxycarbonylmethylide the initial alkylation product underwent elimination of the sulfonium group to an alkene rather than its displacement (72T3845). [Pg.164]

Polyfluorinated a-diketones react with 1,2-diainino compounds, such as ortlio-phenylenediamine, to give 2,3-substituted quinoxalmes [103] Furthermore, the carboxyl function of trifluoropyruvates offers an additional electrophilic center. Cyclic products are obtained with binucleophiles [13, 104] With aliphatic or aromatic 1,2-diamines, six-memhered heterocycles are formed Anilines and phenols undergo C-alkylation with trifluoropyruvates in the ortho position followed by ring closure to form y-lactams and y-lactones [11, 13, 52, 53, 54] (equation 23). [Pg.851]

Sulfur analogues of well known organic compounds with NO (nitroso) or NO2 (nitro) functionalities also exhibit different stabilities and/or structures compared to those of RNO or RNO2. For example, there are no stable C-thionitroso compounds RN=S (R = alkyl, aryl), although Ai,/V -dimethylthionitrosoamine Mc2NNS can be isolated (Section 10.2). [Pg.4]

Reaction of 2-chloromethyl-4//-pyrido[l,2-u]pyrimidine-4-one 162 with various nitronate anions (4 equiv) under phase-transfer conditions with BU4NOH in H2O and CH2CI2 under photo-stimulation gave 2-ethylenic derivatives 164 (01H(55)535). These alkenes 164 were formed by single electron transfer C-alkylation and base-promoted HNO2 elimination from 163. When the ethylenic derivative 164 (R = R ) was unsymmetrical, only the E isomer was isolated. Compound 162 was treated with S-nucleophiles (sodium salt of benzyl mercaptan and benzenesulfinic acid) and the lithium salt of 4-hydroxycoumarin to give compounds 165-167, respectively. [Pg.210]

The reaedvity of carbon is much enhanced by the double deprotonated intermediates of nitro compounds. Except for nitromuhane, other nitroalkanes are alkylated to give the C-alkylated products in 50-60% yield by this procedure fsee Eq. 5.4. ... [Pg.127]

The procedure involves C-alkylation of an a-sulfonyl carbanion derived from 245 with alkyl halides or carbonyl compounds, followed by cleavage of the cyclopropanols 247 produced by deprotection of the hydroxy group of 246 to give (E)-substituted aldehydes141. [Pg.813]

Ether carboxylates with two alkyl chains are produced by reacting nonionics with dichloroaceticacid and a 50% solution of NaOH in water under vacuum at temperatures between 115°C and 120°C [28]. Compounds of the type... [Pg.318]

This chapter covers recent information on the preparation, physical properties, and reactions of quinoxaline and its C-alkyl, C-aryl, iV-alkyl, and A-aryl derivatives as well as their respective ring-reduced analogs. In addition, it includes methods for introducing alkyl or aryl groups (substituted or otherwise) into quinoxalines already bearing substituents and the reactions specific to the alkyl or aryl groups in such compounds. For simplicity, the term alkylquinoxaline in this chapter is intended to include alkyl-, alkenyl-, alkynyl-, and aralkylquinoxalines likewise, arylquino-xaline includes both aryl- and heteroarylquinoxalines. [Pg.93]

To be useful as CVD precursors, a metallo-organic compound should be stable at room temperature so that its storage and transfer are not a problem. It should also decompose readily at low temperature, i.e., below 500°C. The compounds listed in Table 4.1 meet these conditions with the exception of the alkyls of arsenic and phosphorus, which decompose at higher temperatures. For that reason, the hydrides of arsenic and phosphorus are often preferred as CVD precursors (see Ch. 3). These hydrides however are extremely toxic and environmental considerations may restrict their use. [Pg.88]

Water, which can be taken to a minimum by the use of molecular sieves, can produce a lactamide either through direct reaction with the aziridinone intermediate, or upon hydrolysis of oxazolidinone self-condensation products, previously obtained also in the presence of a strong non-nucleophilic base (H ) (ref. 17). The recently reported 0-self-alkylation compound H bears the (S,S)-configurations at the unreacted C-Br and newly formed C-0 bonds. The presence of bromine was expedient for the x-ray assessment of configuration at the two chiral centers of 11 which forms in high diastereoisomeric excess (ref. 5). [Pg.166]

Carbons adjacent to a Z group (as defined on p. 548) can be nitrosated with nitrous acid or alkyl nitrites. The initial product is the C-nitroso compound, but these are stable only when there is no tautomerizable hydrogen. When there is, the product is the more stable oxime. The situation is analogous to that with azo compounds and hydrazones (12-7). The mechanism is similar to that in 12-7 R—H —> R + N=0 — R—N=0. The attacking species is either NO or a carrier of it. When the substrate is a simple ketone, the mechanism goes through the enol (as in halogenation 12-4) ... [Pg.780]


See other pages where C-Alkylation compounds is mentioned: [Pg.169]    [Pg.224]    [Pg.432]    [Pg.224]    [Pg.196]    [Pg.169]    [Pg.169]    [Pg.224]    [Pg.432]    [Pg.224]    [Pg.196]    [Pg.169]    [Pg.199]    [Pg.99]    [Pg.389]    [Pg.288]    [Pg.533]    [Pg.210]    [Pg.15]    [Pg.228]    [Pg.51]    [Pg.531]    [Pg.71]    [Pg.119]    [Pg.1139]    [Pg.203]    [Pg.381]    [Pg.334]    [Pg.126]    [Pg.138]    [Pg.140]    [Pg.321]    [Pg.323]    [Pg.298]    [Pg.645]    [Pg.85]    [Pg.315]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Alkylating compounds

Alkylation compounds

C-Alkyl

C-Alkylation

Pd-Catalyzed Allylic C-Alkylation of Nitro Compounds

© 2024 chempedia.info