Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

BY-catalyzed reduction

The yeast-induced reduction of (5e) —> (6e), (R = substituted phenyls, R = Me) is one of the very first preparative-scale alcohol dehydrogenase catalyzed reactions to have been reported. While the transformations of (5a-j) demonstrate that broad structural mlerances are possible in the substrate ketones, the enzymes are sometimes very discriminating. For example, while the BY-catalyzed reductions of the 2-, 3- and 4-substituted pyridyl ketones (5g) proceed smoothly with high stereospecificitythe analogous furanyl and thiophenyl ketones give virtually racemic product alcohols, and 2-acetylpyrrole is not a substrate at all. ... [Pg.187]

Reductive carbonylation of nitro compounds is catalyzed by various Pd catalysts. Phenyl isocyanate (93) is produced by the PdCl2-catalyzed reductive carbonylation (deoxygenation) of nitrobenzene with CO, probably via nitrene formation. Extensive studies have been carried out to develop the phosgene-free commercial process for phenyl isocyanate production from nitroben-zene[76]. Effects of various additives such as phenanthroline have been stu-died[77-79]. The co-catalysts of montmorillonite-bipyridylpalladium acetate and Ru3(CO) 2 are used for the reductive carbonylation oLnitroarenes[80,81]. Extensive studies on the reaction in alcohol to form the A -phenylurethane 94 have also been carried out[82-87]. Reaction of nitrobenzene with CO in the presence of aniline affords diphenylurea (95)[88]. [Pg.538]

Enzyme catalyzed reductions of carbonyl groups are more often than not com pletely stereoselective Pyruvic acid for example is converted exclusively to (5) (+) lactic acid by the lactate dehydrogenase NADH system (Section 15 11) The enantiomer... [Pg.735]

Alcohol dehydrogenase-catalyzed reduction of ketones is a convenient method for the production of chiral alcohols. HLAD, the most thoroughly studied enzyme, has a broad substrate specificity and accommodates a variety of substrates (Table 11). It efficiendy reduces all simple four- to nine-membered cycHc ketones and also symmetrical and racemic cis- and trans-decalindiones (167). Asymmetric reduction of aUphatic acycHc ketones (C-4—C-10) (103,104) can be efficiendy achieved by alcohol dehydrogenase isolated from Thermoanaerohium hrockii (TBADH) (168). The enzyme is remarkably stable at temperatures up to 85°C and exhibits high tolerance toward organic solvents. Alcohol dehydrogenases from horse Hver and T. hrockii... [Pg.347]

The cleavage proceeds by initial reduction of the nitro groups followed by acid-catalyzed cleavage. The DNB group can be cleaved in the presence of allyl, benzyl, tetrahydropyranyl, methoxy ethoxy methyl, methoxymethyl, silyl, trityl, and ketal protective groups. [Pg.59]

The product described here, 4-(4-chlorophenyl)butan-2-one, was previously prepared in the following ways a) by reduction of the corresponding benzalacetone, b) by catalyzed decarbonylation of 4-chlorophenylacetaldehyde by HFeiCO) in the presence of 2,4-pentanedione, - c) by reaction of 4-chlorobenzyl chloride with 2,4-pentanedione under basic catalysis (K2CO3 in EtOH), d) by reaction of 4-chlorobenzyl chloride with ethyl 3-oxobutanoate under basic catalysis (LiOH), - and e) by reaction of 3-(4-chlorophenyl )-propanoic acid with methyl lithium. - ... [Pg.70]

An unusual by-product was obtained in small yield in palladium-catalyzed reduction of 2-amino-4,5-dimethoxyindanone hydrochloride, The reduction was done in two stages first, a rapid absorption of 1 mol of hydrogen at 38 C to give the amino alcohol, and then a much slower reduction in the presence of HCIO4 at 70 "C. The rearranged by-product was shown to arise from attack of acid on the amino alcohol (50), Resistance to hydrogenolysis is characteristic of / -amino aromatic alcohols (56), a fact that makes reduction of aromatic oximino ketones to amino benzyl alcohols a useful synthetic reaction. [Pg.69]

Catalysts show remarkable product variation in hydrogenation of simple nitriles. Propionitrile, in neutral, nonreactive media, gives on hydrogenation over rhodium-on-carbon high yields of dipropylamine, whereas high yields of tripropylamine arise from palladium or platinum-catalyzed reductions (71). Parallel results were later found for butyronitrile (2S) and valeronitrile (74) but not for long-chain nitriles. Good yields of primary aliphatic amines can be obtained by use of cobalt, nickel, nickel boride, rhodium, or ruthenium in the presence of ammonia (4J 1,67,68,69). [Pg.97]

Both regio- and stereospecificiiy may be influenced by the catalyst and by alkali. Raney nickel opens ce>2,3-diphenylbul-2-ene epoxide with retention of configuration to give cr3 f/iro-2,3-diphenylbutan-2-ol, whereas palladium-on-carbon gives the inverted threo isomer. If a small amount of alkali is added to nickel-catalyzed reductions, nickel too gives the threo isomer (d5). [Pg.138]

An unprecedented nickel-catalyzed reductive coupling between an epoxide and an alkyne to give synthetically useful homoallylic alcohols has been developed by Jamison [55a], and was recently used in a short enantioselective synthesis of am-... [Pg.290]

In the living cells of luminous bacteria, FMNH2 is produced by the reduction of FMN with NADH catalyzed by FMN-reductase. This process is, in effect, the recycling of FMN. In the cells, a long-chain aldehyde is produced by the reduction of the corresponding long-chain acid, which is also a recycling process. [Pg.42]

Nital. A soln of l-5ml of nitric acid (d 1.42 g/cc) in 100ml of 95% ale, used for etching metals. A nital soln contg about 15% by vol of Grasselli reagent, nitric acid and ethanol, used for etching Bi, decomposed vigorously. Explns were also reported when mtal mixts came in contact with other metals. It is believed that the decompn was caused by the reduction of the nitric acid to oxides, which catalyzed the decompn (Ref 1). [Pg.211]

Blechert s synthesis of the piperidine alkaloid (-)-halosaline (387) by Ru-catalyzed RRM is outlined in Scheme 76 [160]. In the presence of 5 mol% of catalyst A, the ring rearrangement of metathesis precursor 385 proceeded cleanly with formation of both heterocyclic rings in 386. In situ deprotection of the cyclic silyl ether in 386, followed by selective reduction and removal of the to-syl group led to 387. [Pg.345]

An obvious drawback in RCM-based synthesis of unsaturated macrocyclic natural compounds is the lack of control over the newly formed double bond. The products formed are usually obtained as mixture of ( /Z)-isomers with the (E)-isomer dominating in most cases. The best solution for this problem might be a sequence of RCAM followed by (E)- or (Z)-selective partial reduction. Until now, alkyne metathesis has remained in the shadow of alkene-based metathesis reactions. One of the reasons maybe the lack of commercially available catalysts for this type of reaction. When alkyne metathesis as a new synthetic tool was reviewed in early 1999 [184], there existed only a single report disclosed by Fiirstner s laboratory [185] on the RCAM-based conversion of functionalized diynes to triple-bonded 12- to 28-membered macrocycles with the concomitant expulsion of 2-butyne (cf Fig. 3a). These reactions were catalyzed by Schrock s tungsten-carbyne complex G. Since then, Furstner and coworkers have achieved a series of natural product syntheses, which seem to establish RCAM followed by partial reduction to (Z)- or (E)-cycloalkenes as a useful macrocyclization alternative to RCM. As work up to early 2000, including the development of alternative alkyne metathesis catalysts, is competently covered in Fiirstner s excellent review [2a], we will concentrate here only on the most recent natural product syntheses, which were all achieved by Fiirstner s team. [Pg.353]

I.V. Yentekakis, R.M. Lambert, M.S. Tikhov, M. Konsolakis, and V. Kiousis, Promotion by sodium in emission control catalysis A kinetic and spectroscopic study of the Pd-catalyzed reduction on NO by propene, J. Catal. 176, 82-92 (1998). [Pg.328]

Figure28-10. The phenylalanine hydroxylase reaction. Two distinct enzymatic activities are involved. Activity II catalyzes reduction of dihydrobiopterin by NADPH, and activity I the reduction of O2 to HjO and of phenylalanine to tyrosine. This reaction is associated with several defects of phenylalanine metabolism discussed in Chapter 30. Figure28-10. The phenylalanine hydroxylase reaction. Two distinct enzymatic activities are involved. Activity II catalyzes reduction of dihydrobiopterin by NADPH, and activity I the reduction of O2 to HjO and of phenylalanine to tyrosine. This reaction is associated with several defects of phenylalanine metabolism discussed in Chapter 30.
Chiang and coworkers synthesized a dimer of compound 26 in which two diiron subunits are linked by two azadithiolate ligands as a model of the active site for the [FeFeJ-hydrogenase [203]. Protonation of 26 afforded the p-hydride complex [26-2H 2H ] via the initially protonated spieces [26-2H ] (Scheme 62). These three complexes were also characterized by the X-ray diffraction analyses. H2-generation was observed by electrochemical reduction of protons catalyzed by 26 in the presence of HBF4 as a proton source. It was experimentally ascertained that [26-2H 2H ] was converted into 26 by four irreversible reduction steps in the absence of HBF4. [Pg.69]

Scheme 33 Iron-catalyzed reductive carbonylation reported by Reppe [108]... Scheme 33 Iron-catalyzed reductive carbonylation reported by Reppe [108]...

See other pages where BY-catalyzed reduction is mentioned: [Pg.195]    [Pg.198]    [Pg.55]    [Pg.56]    [Pg.195]    [Pg.198]    [Pg.55]    [Pg.56]    [Pg.268]    [Pg.250]    [Pg.104]    [Pg.944]    [Pg.309]    [Pg.383]    [Pg.524]    [Pg.31]    [Pg.207]    [Pg.16]    [Pg.104]    [Pg.944]    [Pg.302]    [Pg.719]    [Pg.137]    [Pg.56]    [Pg.202]    [Pg.145]    [Pg.707]    [Pg.427]    [Pg.596]    [Pg.354]    [Pg.473]    [Pg.15]    [Pg.52]   


SEARCH



Catalyzed reductions

© 2024 chempedia.info