Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butler-Volmer-Frumkin equation

Let us use as an intuitive approach [10] to the problem, the Butler-Volmer-Frumkin equation for the current density J... [Pg.6]

The effect of the phospholipids on the rate of ion transfer has been controversial over the last years. While the early studies found a retardation effect [6-8], more recent ones reported that the rate of ion transfer is either not retarded [9,10] or even enhanced due to the presence of the monolayer [11 14]. Furthermore, the theoretical efforts to explain this effect were unsatisfactory. The retardation observed in the early studies was explained in terms of the blocking of the interfacial area by the phospholipids, and therefore was related to the size of the transferring ion and the state of the monolayer [8,15]. The enhancement observed in the following years was attributed to electrical double layer effects, but a Frumkin-type correction to the Butler Volmer (BV) equation was found unsuitable to explain the observations [11,16]. Recently, Manzanares et al. showed that the enhancement can be described by an electrical double layer correction provided that an accurate picture of the electrical double layer structure is used [17]. This theoretical approach will be the subject of Section III.C. [Pg.536]

Consider a system in which a potential difference AV, in general different from the equilibrium potential between the two phases A 0, is applied from an external source to the phase boundary between two immiscible electrolyte solutions. Then an electric current is passed, which in the simplest case corresponds to the transfer of a single kind of ion across the phase boundary. Assume that the Butler-Volmer equation for the rate of an electrode reaction (see p. 255 of [18]) can also be used for charge transfer across the phase boundary between two electrolytes (cf. [16, 19]). It is mostly assumed (in the framework of the Frumkin correction) that only the potential difference in the compact part of the double layer affects the actual charge transfer, so that it follows for the current density in our system that... [Pg.24]

We know that thermodynamics is a very powerful tool for the study of systems at equilibrium, but electrode processes are systems not at equilibrium when at equilibrium there is no net flow of current and no net reaction. Therefore electrode reactions should be studied using the concepts and formalities of kinetics. Indeed, the same period that saw the flourishing of solution electrochemistry, also saw the formulation of the fundamental theoretical concepts of electrode kinetics the work of Tafel on the relationship of current and potential was published in 1905 those of Butler and Volmer and Erdey Gruz, which formulated the basic equation for electrode kinetics, were published in 1924 and 1930 respectively. Frumkin in 1933 showed the correlation between the structure of the double layer and the kinetics of the electrode process. The first quantum mechanical approach to electrode kinetics was published by Gurney in 1931. [Pg.6]


See other pages where Butler-Volmer-Frumkin equation is mentioned: [Pg.42]    [Pg.85]    [Pg.55]    [Pg.554]    [Pg.162]    [Pg.62]    [Pg.85]    [Pg.11]    [Pg.328]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Butler

Butler equation

Butler-Volmer

Butler-Volmer equations

Equation Frumkin

Equation Volmer

Frumkin

© 2024 chempedia.info