Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butadiene addition rate, effect

Co(OCOR)2/AlEt3/H20 initiates polymerization of 1,3-butadiene. Addition of phosphine ligands influences the structure and molecular weight of the polymer [75]. Sterically bulky phosphines decrease catalytic activity. Co(OCOR)2/MAO/f-BuCl is also effective for the polymerization of 1,3-buta-diene to produce the cis- 1,4-polymer [76]. The catalyst preparation procedure and aging time have a critical influence on the cis content and yield of the polymer. The reaction rate is reduced by addition of mesitylene or trimethoxybenzene to the reaction mixture [77]. The concentration of the active species of the catalyst is estimated based on the equilibrium between the Co and Al compounds in the reaction mixture [78]. [Pg.156]

This hypothesis was disproved by Worsfold413,415) who investigated the effect of butadiene on the rate of addition of styrene to lithium polystyrene. Only qualitative results were reported the rapidity of the butadiene addition prevented quantitative investigation. However, a closely similar system, isoprene - styrene, was more amenable to a quantitative study415) because the addition of isoprene to lithium polystyrene is somewhat slower. The general pattern of co-polymerization is the same as in the butadiene - styrene system. The effect of small amounts of isoprene on the rate of styrene addition was investigated and the retarding effect demanded by the Korotkov mechanism was not observed. ... [Pg.147]

Relatively small substituents at C(2) and C(3) of the diene exert little steric influence on the rate of D-A addition. 2,3-Dimethylbutadiene reacts with maleic anhydride about ten times faster than butadiene owing to the electronic effect of the methyl... [Pg.480]

Chloroprene monomer will autoxidise very rapidly with air, and even at 0°C it produces an unstable peroxide (a mixed 1,2- and 1,4-addition copolymer with oxygen), which effectively will catalyse exothermic polymerisation of the monomer. The kinetics of autoxidation have been studied [1], It forms popcorn polymer at a greater rate than does butadiene [2],... [Pg.494]

Effect of Butadiene Concentration on the Rate of Addition of Ethylene to Butadiene at 50°C ... [Pg.274]

The mechanistic proposal of rate-limiting hydrogen atom transfer and radical recombination is based on the observed rate law, the lack of influence of CO pressure, kinetic isotope effects [studied with DMn(CO)s] and CIDNP evidence. In all known cases, exclusive formation of the overall 1,4-addition product has been observed for reaction of butadiene, isoprene and 2,3-dimethyl-l,3-butadiene. The preferred trapping of allyl radicals at the less substituted side by other radicals has actually been so convincing that its observation has been taken as a mechanistic probe78. [Pg.639]

It was also discovered at Phillips. that the four rate constants discussed above can be altered by the addition of small amounts of an ether or a tertiary amine resulting in reduction or elimination of the block formation. Figures 13 and 14 illustrate the effect of diethyl ether on the rate of copolymerization and on the incorporation of styrene in the copolymer. Indeed, random copolymers of butadiene and styrene or isoprene and styrene can be prepared by using alkyllithium as initiator in the presence of small amounts of an ether or a tertiary amine. [Pg.397]

Studies in the grafting of mixed monomers to cellulose have also been reported by Sakurada (113). Binary mixtures studied included butadiene with styrene or with acrylonitrile, and styrene with acrylonitrile. Remarkable increases in rate in the case of mixed monomer similar to those found by RAPSON were found in many cases. For example, about 10% of butadiene increased the grafting yield about ten fold. Similar results were found with the addition of acrylonitrile to butadiene and to styrene. Ternary mixtures of monomers were also investigated by both Rapson (109) and Sakurada (113). The large increases in rate with certain mixtures were interpreted by Sakurada as due to a particular balance of gd effects akin in many ways to popcorn polymerization. The effects were found also with polyvinyl alcohol but not with polyethylene where gel effects would perhaps be less prominent. [Pg.137]

The reaction rates for the cycloaddition of several of the mentioned dienophiles to electron-rich dienes are significantly increased upon addition of a catalytic amount of a Lewis acid. The A1C13 complex of methyl acrylate reacts 100,000 times faster with butadiene than pure methyl acrylate (Figure 15.21). Apparently, the C=C double bond in the Lewis acid complex of an acceptor-substituted dienophile is connected to a stronger acceptor substituent than in the Lewis-acid-free analog. A better acceptor increases the dienophilicity of a dienophile in a manner similar to the effect several acceptors have in the series of Table 15.1. [Pg.662]

Wiberg and coworkers published relative rate constants and the products of reaction of silene 6 with a number of alkenes and dienes in ether solution at 100 °C6 106-108. These data are listed in Table 2 along with an indication of the type of product formed in each case. As is the norm in Diels-Alder additions by more conventional dienophiles, the rate of [2 + 4]-cycloaddition of 6 to dienes increases with sequential methyl substitution in the 2- and 3-positions of the diene, as is illustrated by the data for 2,3-dimethyl-1,3-butadiene (DMB), isoprene and 1,3-butadiene. The well-known effects of methyl substitution at the 1- and 4-positions of the diene in conventional Diels-Alder chemistry are also reflected with 6 as the dienophile. For example, lruns-1,3-pen tadiene reacts significantly faster than the f/.v-isorrier, an effect that has been attributed to steric destabilization of the transition state for [2 + 4]-cycloaddition. In fact, the reaction of c/s-l,3-pentadiene with 6 yields silacyclobutane adducts, while the trans-diene reacts by [2 + 4]-cycloaddition108. No detectable reaction occurs with 2,5-dimethyl-2,4-hexadiene. The reaction of 6 with isoprene occurs regioselectively to yield adducts 65a and 65b in the ratio 65a 65b = 8.5 (equation 50)106,107. [Pg.986]


See other pages where Butadiene addition rate, effect is mentioned: [Pg.216]    [Pg.631]    [Pg.631]    [Pg.272]    [Pg.392]    [Pg.452]    [Pg.679]    [Pg.158]    [Pg.148]    [Pg.178]    [Pg.568]    [Pg.600]    [Pg.257]    [Pg.550]    [Pg.392]    [Pg.46]    [Pg.67]    [Pg.78]    [Pg.184]    [Pg.163]    [Pg.229]    [Pg.631]    [Pg.285]    [Pg.158]    [Pg.53]    [Pg.72]    [Pg.76]    [Pg.391]    [Pg.128]    [Pg.532]    [Pg.97]    [Pg.42]    [Pg.235]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



1.3- Butadiene addition

Addition rate

© 2024 chempedia.info