Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bubble population balance, volume averaging

The population balance simulator has been developed for three-dimensional porous media. It is based on the integrated experimental and theoretical studies of the Shell group (38,39,41,74,75). As described above, experiments have shown that dispersion mobility is dominated by droplet size and that droplet sizes in turn are sensitive to flow through porous media. Hence, the Shell model seeks to incorporate all mechanisms of formation, division, destruction, and transport of lamellae to obtain the steady-state distribution of droplet sizes for the dispersed phase when the various "forward and backward mechanisms become balanced. For incorporation in a reservoir simulator, the resulting equations are coupled to the flow equations found in a conventional simulator by means of the mobility in Darcy s Law. A simplified one-dimensional transient solution to the bubble population balance equations for capillary snap-off was presented and experimentally verified earlier. Patzek s chapter (Chapter 16) generalizes and extends this method to obtain the population balance averaged over the volume of mobile and stationary dispersions. The resulting equations are reduced by a series expansion to a simplified form for direct incorporation into reservoir simulators. [Pg.22]

The continuum form of the bubble population balance, applicable to flow of foams in porous media, can be obtained by volume averaging. Bubble generation, coalescence, mobilization, trapping, condensation, and evaporation are accounted for in the volume averaged transport equations of the flowing and stationary foam texture. [Pg.331]

As shown in Appendix A, Equation (1) can be averaged over the volume of the porous medium to yield the population balances of bubbles in flowing foam... [Pg.328]

The zeroth order moments of the volume averaged bubble population equations, i.e., the balances on the total bubble density in flowing and stationary foam, have the form of the usual transport equations and can be readily incorporated into a suitable reservoir simulator. [Pg.331]

The purpose of this Appendix is to volume-average the population balance of bubble number density... [Pg.333]

Lee et al [66] and Prince and Blanch [92] adopted the basic ideas of Coulaloglou and Tavlarides [16] formulating the population balance source terms directly on the averaging scales performing analysis of bubble breakage and coalescence in turbulent gas-liquid dispersions. The source term closures were completely integrated parts of the discrete numerical scheme adopted. The number densities of the bubbles were thus defined as the number of bubbles per unit mixture volume and not as a probability density in accordance with the kinetic theory of gases. [Pg.809]

Chen et al [12] and Bertola et al [8] simulated mixtures consisting of A1+1 phases by use of algebraic slip mixture models (ASMMs) which have been combined with a population balance equation. Each bubble size group did have individual local velocities which were calculated from appropriate algebraic slip velocity parameterizations. In order to close the system of equations, the mixture velocity was expressed in terms of the individual phase velocities. The average gas phase velocity was then determined from a volume weighted slip velocity superposed on the continuous phase velocity. Chen et al [12] also did run a few simulations with the ASMM model with the same velocity for all the bubble phases. [Pg.810]

In this section the population balance modeling approach established by Randolph [95], Randolph and Larson [96], Himmelblau and Bischoff [35], and Ramkrishna [93, 94] is outlined. The population balance model is considered a concept for describing the evolution of populations of countable entities like bubble, drops and particles. In particular, in multiphase reactive flow the dispersed phase is treated as a population of particles distributed not only in physical space (i.e., in the ambient continuous phase) but also in an abstract property space [37, 95]. In the terminology of Hulburt and Katz [37], one refers to the spatial coordinates as external coordinates and the property coordinates as internal coordinates. The joint space of internal and external coordinates is referred to as the particle phase space. In this case the quantity of basic interest is a density function like the average number of particles per unit volume of the particle state space. The population balance may thus be considered an equation for the number density and regarded as a number balance for particles of a particular state. [Pg.835]


See other pages where Bubble population balance, volume averaging is mentioned: [Pg.326]    [Pg.329]    [Pg.333]    [Pg.327]    [Pg.779]    [Pg.785]    [Pg.812]    [Pg.903]    [Pg.909]    [Pg.939]    [Pg.941]    [Pg.943]   


SEARCH



Average volume

Averaging volume

Bubble population

Bubble population balance

Bubble population balance, volume

Bubble volume

Population balance

Volume-averaged population

Volume-averaged population balances

Volume-averaging population

Volume-averaging population balances

© 2024 chempedia.info