Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bromobenzene-pyridine

Fig. 9 The calculated energy profile (relative energies, MP2/6-31G counterpoise corrected) for the direct approach of bromine and nitrogen in a bromobenzene-pyridine molecular dimer. The absolute well depth is 8.8 kJ mol ... Fig. 9 The calculated energy profile (relative energies, MP2/6-31G counterpoise corrected) for the direct approach of bromine and nitrogen in a bromobenzene-pyridine molecular dimer. The absolute well depth is 8.8 kJ mol ...
To avoid problems with the separation of regiomers, dimethyl acetylene dicarboxylate (DMAD) was chosen as a dienophile. The intermolecular Diels-Alder reactions were performed in refluxing dichlorobenzene (bp 132 °C), while the intramolecular reaction of alkyne tethered pyrazinone required a solvent with a higher boiling point (bromobenzene, bp 156 °C). In the case of 3-methoxy or 3-phenyl pyrazinones a mixture of pyridinones and pyridines was obtained, while for the alkyne tethered analogue only the di-hydrofuropyridinone was isolated as the single reaction product. [Pg.296]

The preceding analysis neglects the fact that for very fast follow-up reactions, transformation of B into C may take place within the solvent cage before separation of B and P (Scheme 2.14). The ensuing systematic error is an increasing function of kc but does not exceed +30 mV for rate constants as high as 1011 M-1 s-1.21 Typical examples concern the reductive cleavage of chloro- and bromobenzenes and pyridines.22... [Pg.131]

For quite sparingly soluble substances, formic acid, pyridine, bromobenzene, nitrobenzene, and occasionally also phenol, ethyl benzoate, aniline, and dioxan are used. A distinct relation exists between the constitution of solute and solvent, and is expressed by the old rule similia similibus solvuntur. Thus, as is well known, substances containing hydroxyl (e.g. sugars, carboxylic acids) are soluble in water, whereas hydrocarbons are more soluble in benzene and petrol ether than, for example, in alcohols. [Pg.5]

EINECS 203-468-6, see Ethylenediamine EINECS 203-470-7, see Allyl alcohol EINECS 203-472-8, see Chloroacetaldehyde EINECS 203-481-7, see Methyl formate EINECS 203-523-4, see 2-Methylpentane EINECS 203-528-1, see 2-Pentanone EINECS 203-544-9, see 1-Nitropropane EINECS 203-545-4, see Vinyl acetate EINECS 203-548-0, see 2,4-Dimethylpentane EINECS 203-550-1, see 4-Methyl-2-pentanone EINECS 203-558-5, see Diisopropylamine EINECS 203-560-6, see Isopropyl ether EINECS 203-561-1, see Isopropyl acetate EINECS 203-564-8, see Acetic anhydride EINECS 203-571-6, see Maleic anhydride EINECS 203-576-3, see m-Xylene EINECS 203-598-3, see Bis(2-chloroisopropyl) ether EINECS 203-604-4, see 1,3,5-Trimethylbenzene EINECS 203-608-6, see 1,3,5-Trichlorobenzene EINECS 203-620-1, see Diisobutyl ketone EINECS 203-621-7, see sec-Hexyl acetate EINECS 203-623-8, see Bromobenzene EINECS 203-624-3, see Methylcyclohexane EINECS 203-625-9, see Toluene EINECS 203-628-5, see Chlorobenzene EINECS 203-630-6, see Cyclohexanol EINECS 203-632-7, see Phenol EINECS 203-686-1, see Propyl acetate EINECS 203-692-4, see Pentane EINECS 203-694-5, see 1-Pentene EINECS 203-695-0, see cis-2-Pentene EINECS 203-699-2, see Butylamine EINECS 203-713-7, see Methyl cellosolve EINECS 203-714-2, see Methylal EINECS 203-716-3, see Diethylamine EINECS 203-721-0, see Ethyl formate EINECS 203-726-8, see Tetrahydrofuran EINECS 203-729-4, see Thiophene EINECS 203-767-1, see 2-Heptanone EINECS 203-772-9, see Methyl cellosolve acetate EINECS 203-777-6, see Hexane EINECS 203-799-6, see 2-Chloroethyl vinyl ether EINECS 203-804-1, see 2-Ethoxyethanol EINECS 203-806-2, see Cyclohexane EINECS 203-807-8, see Cyclohexene EINECS 203-809-9, see Pyridine EINECS 203-815-1, see Morpholine EINECS 203-839-2, see 2-Ethoxyethyl acetate EINECS 203-870-1, see Bis(2-chloroethyl) ether EINECS 203-892-1, see Octane EINECS 203-893-7, see 1-Octene EINECS 203-905-0, see 2-Butoxyethanol EINECS 203-913-4, see Nonane EINECS 203-920-2, see Bis(2-chloroethoxy)methane EINECS 203-967-9, see Dodecane EINECS 204-066-3, see 2-Methylpropene EINECS 204-112-2, see Triphenyl phosphate EINECS 204-211-0, see Bis(2-ethylhexyl) phthalate EINECS 204-258-7, see l,3-Dichloro-5,5-dimethylhydantoin... [Pg.1482]

With the carboxylic acid 123, dicyclohexylcarbodiimide (DCC) mediated esterification and amidation reactions can be carried out (Scheme 4. 27) [113]. For example, the reaction of 123 with EtOH in the presence of DCC and IH-benzotriazol (BtOH) in bromobenzene with a catalytic amount of 4-(dimefhylamino)pyridine (DMAP)... [Pg.126]

The mechanism of hepatotoxicity is therefore currently unclear. It has been suggested that lipid peroxidation is responsible rather than covalent binding to protein. Arylation of other low molecular weight nucleophiles such as coenzyme A and pyridine nucleotides also occurs and may be involved in the toxicity. Bromobenzene is known to cause the inhibition or inactivation of enzymes containing SH groups. It also causes increased breakdown of phospholipids and inhibits enzymes involved in phospholipid synthesis. Arylation of sites on... [Pg.323]

The production of bipyridyls (1) and bipiperidyls (2) was observed on reduction of pyridine. Schering AG has a patent on a process for producing 4,4 -dipyridyls at the cathode of a divided or undivided cell using liquid ammonia as the solvent.26 The same bipyridyl was also formed during electrolysis of bromobenzene in pyridine solvent, using Mg electrodes.27 Bipiperidyls (2) were observed as products of pyridine reduction as early as... [Pg.171]

At an early date it was already recognized that the ketone (IX) derived from an oxidation of the C-18 carbinol function of methyl reserpate could be of considerable utility for further transformation of the reserpine pentacyclic ring system, but early attempts at the preparation of the desired compound by conventional oxidation, e.g., by Oppenauer s method, AAchlorosuceinimide, sodium dichromate, or chromic oxide in pyridine, were unsuccessful with both methyl reserpate and methyl 18-epireserpate. The ketone was finally obtained by heating methyl reserpate p-bromobenzene sulfonate with dimethyl sulfoxide in the presence of triethylamine (162), a method successfully used for simpler compounds (163). Subsequently, it was found that this oxidation could also be realized with other benzene sulfonate esters of methyl reserpate and 18-epireserpate. That the stereochemistry of the molecule was unaffected was proved by sodium borohydride reduction of the ketone, which gave equal amounts of methyl reserpate and its 18-epimer. This and other simple reactions of the ketone are sketched in Chart III, and additional observations will be given. [Pg.305]

Q Bromobenzene is readily synthesized from benzene by reaction with bromine in the presence of pyridine. Suggest a mechanism for this route. [Pg.105]

The acetylation of typical aromatic compounds such as benzene, toluene, and bromobenzene catalyzed by AICI3 and FeClj in the presence of pyridine-based ionic liquids [EtPy]+BF and [EtPyj CF COO" was carried out by Y. Xiao s group... [Pg.52]


See other pages where Bromobenzene-pyridine is mentioned: [Pg.140]    [Pg.289]    [Pg.217]    [Pg.23]    [Pg.191]    [Pg.363]    [Pg.189]    [Pg.938]    [Pg.1498]    [Pg.117]    [Pg.106]    [Pg.450]    [Pg.818]    [Pg.134]    [Pg.203]    [Pg.189]    [Pg.860]    [Pg.271]    [Pg.217]    [Pg.401]    [Pg.136]    [Pg.860]    [Pg.106]    [Pg.134]    [Pg.289]    [Pg.217]    [Pg.239]    [Pg.69]    [Pg.300]    [Pg.261]    [Pg.243]    [Pg.322]    [Pg.289]    [Pg.212]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Bromobenzene

Bromobenzenes

© 2024 chempedia.info