Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Broad magnetic resonances

Proton chemical shift data from nuclear magnetic resonance has historically not been very informative because the methylene groups in the hydrocarbon chain are not easily differentiated. However, this can be turned to advantage if a polar group is present on the side chain causing the shift of adjacent hydrogens downfteld. High resolution C-nmr has been able to determine position and stereochemistry of double bonds in the fatty acid chain (62). Broad band nmr has also been shown useful for determination of soHd fat content. [Pg.132]

Most hydrocarbon resins are composed of a mixture of monomers and are rather difficult to hiUy characterize on a molecular level. The characteristics of resins are typically defined by physical properties such as softening point, color, molecular weight, melt viscosity, and solubiHty parameter. These properties predict performance characteristics and are essential in designing resins for specific appHcations. Actual characterization techniques used to define the broad molecular properties of hydrocarbon resins are Fourier transform infrared spectroscopy (ftir), nuclear magnetic resonance spectroscopy (nmr), and differential scanning calorimetry (dsc). [Pg.350]

The proton magnetic resonance spectrum (carbon tetrachloride) consists of a broad methine signal centered at S 2.55 and a methyl singlet at 8 1.53 superimposed upon a methylene absorption at 8 1.25-1.85. Vapor phase chromatographic analysis denoted a purity of >98%. [Pg.58]

Infrared, nuclear magnetic resonance, ultraviolet, optical rotary dispersion and circular dichroism measurements have been used for the spectral analysis of thiiranes. A few steroidal thiiranes have been reported to possess infrared absorption in the range from 580 to 700 cm The intermediate thiocyanate derivatives (RSCN) have a strong sharp peak at 2130-2160 cm the isomeric isothiocyanate (RNCS) shows a much stronger but broad band at 2040-2180 cm. ... [Pg.42]

Solid state materials have been studied by nuclear magnetic resonance methods over 30 years. In 1953 Wilson and Pake ) carried out a line shape analysis of a partially crystalline polymer. They noted a spectrum consisting of superimposed broad and narrow lines which they ascribed to rigid crystalline and amorphous material respectively. More recently several books and large articles have reviewed the tremendous developments in this field, particularly including those of McBrierty and Douglas 2) and the Faraday Symposium (1978)3) —on which this introduction is largely based. [Pg.2]

In this review the definition of orientation and orientation functions or orientation averages will be considered in detail. This will be followed by a comprehensive account of the information which can be obtained by three spectroscopic techniques, infra-red and Raman spectroscopy and broad line nuclear magnetic resonance. The use of polarized fluorescence will not be discussed here, but is the subject of a contemporary review article by the author and J. H. Nobbs 1. The present review will be completed by consideration of the information which has been obtained on the development of molecular orientation in polyethylene terephthalate and poly(tetramethylene terephthalate) where there are also clearly defined changes in the conformation of the molecule. In this paper, particular attention will be given to the characterization of biaxially oriented films. Previous reviews of this subject have been given by the author and his colleagues, but have been concerned with discussion of results for uniaxially oriented systems only2,3). [Pg.83]

The spectral properties of the product are as follows infrared (neat) cm.-1 3268, 1377, 1037 proton magnetic resonance (carbon tetrachloride) d, multiplicity, number of protons 0.88 (multiplet, 6), 1.38 (multiplet, 7), 3.33 (unresolved doublet, 2), 5.14 (broad singlet, 1). [Pg.2]

The pure adduct had the following proton magnetic resonance spectrum (chloroform-d) <5, multiplicity, number of protons, assignment 6.75 (singlet, 2, cyclohexene vinyl protons), 6.20 (multiplet, 2, cyclobutene vinyl protons), 3.5 (broad multiplet, 4, cyolobutane protons). [Pg.44]

The H-NMR spectrum of 2 in CDCI3 (Figure 1) exhibits broad unresolved resonances in the aromatic region similar to those found in the monomer. Broad signals with lack of resolution are consistent with magnetic non-equivalence of the methyl group protons resulting from a mixture of triad tacticities. [Pg.202]

Almost all the reported compounds have been characterized with the help of various nuclear magnetic resonance (NMR) techniques. For previous studies of the compounds, refer to CHEC-II(1996) <1996CHEC-II(8)713>.The H NMR spectrum (300MHz) of 2,3,7-trirnethyl-3a,9a-dihydro-1,8-dithiaMa,5,9-triazacyclopenta[3]naphthalene-4,6-dione 47 <2000JHC1161> showed the presence of one quartet at 8 4.23 corresponding to the CH. Another broad singlet corresponds to the presence of the N-H proton. [Pg.330]

Carborane, Bk>C2Hi2, is quite soluble in aromatic solvents and is sparingly soluble in aliphatic solvents. The infrared spectrum has been previously reported.25 The proton nuclear magnetic resonance spectrum of a chloroform-d3 solution of carborane contains a broad CH resonance at 6.46 t. [Pg.100]


See other pages where Broad magnetic resonances is mentioned: [Pg.470]    [Pg.472]    [Pg.470]    [Pg.472]    [Pg.1558]    [Pg.134]    [Pg.458]    [Pg.415]    [Pg.515]    [Pg.268]    [Pg.173]    [Pg.569]    [Pg.125]    [Pg.131]    [Pg.442]    [Pg.6]    [Pg.22]    [Pg.26]    [Pg.43]    [Pg.48]    [Pg.80]    [Pg.81]    [Pg.91]    [Pg.92]    [Pg.66]    [Pg.69]    [Pg.109]    [Pg.119]    [Pg.10]    [Pg.45]    [Pg.91]    [Pg.149]    [Pg.182]    [Pg.204]    [Pg.213]    [Pg.271]    [Pg.509]    [Pg.485]    [Pg.111]    [Pg.296]    [Pg.55]   


SEARCH



Broad

Broad line nuclear magnetic resonance

Broadness

© 2024 chempedia.info