Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Branching structures, nuclear magnetic

Another definition, taking into account polymerization conversion, has been more recently proposed.192 Perfect dendrimers present only terminal- and dendritic-type units and therefore have DB = 1, while linear polymers have DB = 0. Linear units do not contribute to branching and can be considered as structural defects present in hyperbranched polymers but not in dendrimers. For most hyperbranched polymers, nuclear magnetic resonance (NMR) spectroscopy determinations lead to DB values close to 0.5, that is, close to the theoretical value for randomly branched polymers. Slow monomer addition193 194 or polycondensations with nonequal reactivity of functional groups195 have been reported to yield polymers with higher DBs (0.6-0.66 range). [Pg.57]

To illustrate the utility of the MWBD method, a series of commercial polyvinyl acetates and low density polyethylenes are analyzed. Either kinetic models or 13c nuclear magnetic resonance results are used to estimate the branching structural parameter. [Pg.147]

Structural investigations into the degree of branching and into the position and nature of glycosidic bonds and of non-carbohydrate residues in polysaccharides may include periodate oxidation and other procedures such as exhaustive methylation. X-ray diffraction and spectroscopic techniques such as nuclear magnetic resonance and optical rotatory dispersion also give valuable information especially relating to the three-dimensional structures of these polymers. [Pg.327]

In the past fifty years, the NMR Chemical Shielding have evolved from corrections to the measurement of nuclear magnetic moments as quoted from Ramsey s 1950 original papers (Phys. Rev. 77, 567 and 78, 699), to one of the most important tools for structural elucidation in many branches of chemistry. There are no simple relationships between molecular structure and chemical shifts. Their dependence on the molecular electronic and geometrical structure can be derived via complex quantum mechanical equations. [Pg.381]

With the advent of advanced characterization techniques such as multiple detector liquid exclusion chromatography and - C Fourier transform nuclear magnetic resonance spectroscopy, the study of structure/property relationships in polymers has become technically feasible (l -(5). Understanding the relationship between structure and properties alone does not always allow for the solution of problems encountered in commercial polymer synthesis. Certain processes, of which emulsion polymerization is one, are controlled by variables which exert a large influence on polymer infrastructure (sequence distribution, tacticity, branching, enchainment) and hence properties. In addition, because the emulsion polymerization takes place in an heterophase system and because the product is an aqueous dispersion, it is important to understand which performance characteristics are influended by the colloidal state, (i.e., particle size and size distribution) and which by the polymer infrastructure. [Pg.386]

The direct detection of radiation induced crosslinks in polyethylene has been a major goal of radiation chemists for many years. It was recognized as early as 1967 that solution 13c nuclear magnetic resonance (NMR) spectroscopy could be used to detect structures produced in polymers from ionizing radiation. Fischer and Langbein(l) reported the first direct detection of radiation induced crosslinks (H-links) in polyoxymethylene using 13c NMR. Bennett et al.(2) used 13c NMR to detect radiation induced crosslinks in n-alkanes irradiated in vacuum in the molten state. Bovey et al.(3) used this technique to identify both radiation induced H-links and long chain branches (Y-links) in n-alkanes... [Pg.245]

Most commercial polymers are substantially linear. They have a single chain of mers that forms the backbone of the molecule. Side chains can occur and can have a major effect on physical properties. An elemental analysis of any polyolefin [e.g., polyethylene, polypropylene, poly(l-butene)] gives the same empirical formula, CH2, and it is only the nature of the side chains that distinguishes between the polyolefins. Polypropylene has methyl side chains on every other carbon atom along the backbone. Side chains at random locations are called branches. Branching and other polymer structures can be deduced using analytical techniques such as nuclear magnetic resonance (NMR). [Pg.468]

Nuclear Magnetic Resonance Spectroscopy. Like IR spectroscopy, NMR spectroscopy requires little sample preparation, and provides extremely detailed information on the composition of many resins. The only limitation is that the sample must be soluble in a deuterated solvent (e.g., deuterated chloroform, tetrahydro-furan, dimethylformamide). Commercial pulse Fourier transform NMR spectrometers with superconducting magnets (field strength 4-14 Tesla) allow routine measurement of high-resolution H- and C-NMR spectra. Two-dimensional NMR techniques and other multipulse techniques (e.g., distortionless enhancement of polarization transfer, DEPT) can also be used [10.16]. These methods are employed to analyze complicated structures. C-NMR spectroscopy is particularly suitable for the qualitative analysis of individual resins in binders, quantiative evaluations are more readily obtained by H-NMR spectroscopy. Comprehensive information on NMR measurements and the assignment of the resonance lines are given in the literature, e.g., for branched polyesters [10.17], alkyd resins [10.18], polyacrylates [10.19], polyurethane elastomers [10.20], fatty acids [10.21], cycloaliphatic diisocyanates [10.22], and epoxy resins [10.23]. [Pg.237]


See other pages where Branching structures, nuclear magnetic is mentioned: [Pg.338]    [Pg.146]    [Pg.442]    [Pg.538]    [Pg.247]    [Pg.296]    [Pg.149]    [Pg.96]    [Pg.499]    [Pg.158]    [Pg.1532]    [Pg.343]    [Pg.125]    [Pg.321]    [Pg.457]    [Pg.236]    [Pg.74]    [Pg.96]    [Pg.244]    [Pg.1168]    [Pg.498]    [Pg.1917]    [Pg.1924]    [Pg.258]    [Pg.142]    [Pg.313]    [Pg.42]    [Pg.65]    [Pg.13]    [Pg.58]    [Pg.119]    [Pg.28]    [Pg.176]    [Pg.252]    [Pg.572]    [Pg.343]    [Pg.466]    [Pg.65]    [Pg.135]   


SEARCH



Branching structure

Magnetic structure

Nuclear magnetic resonance spectroscopy branching structures

Nuclear structure

© 2024 chempedia.info