Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat transfer boundary conditions

In the finite element solution of the energy equation it is sometimes necessary to impose heat transfer across a section of the domain wall as a boundary condition in the process model. This type of convection (Robins) boundary condition is given as... [Pg.100]

In some convection equations, such as for turbulent pipe flow, a special correction factor is used. This factor relates to the heat transfer conditions at the flow inlet, where the flow has not reached its final velocity distribution and the boundary layer is not fully developed. In this region the heat transfer rate is better than at the region of fully developed flow. [Pg.115]

The problems experienced in drying process calculations can be divided into two categories the boundary layer factors outside the material and humidity conditions, and the heat transfer problem inside the material. The latter are more difficult to solve mathematically, due mostly to the moving liquid by capillary flow. Capillary flow tends to balance the moisture differences inside the material during the drying process. The mathematical discussion of capillary flow requires consideration of the linear momentum equation for water and requires knowledge of the water pressure, its dependency on moisture content and temperature, and the flow resistance force between water and the material. Due to the complex nature of this, it is not considered here. [Pg.141]

Under steady-state conditions, the temperature distribution in the wall is only spatial and not time dependent. This is the case, e.g., if the boundary conditions on both sides of the wall are kept constant over a longer time period. The time to achieve such a steady-state condition is dependent on the thickness, conductivity, and specific heat of the material. If this time is much shorter than the change in time of the boundary conditions on the wall surface, then this is termed a quasi-steady-state condition. On the contrary, if this time is longer, the temperature distribution and the heat fluxes in the wall are not constant in time, and therefore the dynamic heat transfer must be analyzed (Fig. 11.32). [Pg.1066]

In most cases, however, heat transfer and mass transfer occur simultaneously, and the coupled equation (230) thus takes into account the most general case of the coupling effects between the various fluxes involved. To solve Eq (230) with the appropriate initial and boundary conditions one can decouple the equation by making the transformation (G3)... [Pg.377]

For the common problem of heat transfer between a fluid and a tube wall, the boundary layers are limited in thickness to the radius of the pipe and, furthermore, the effective area for heat flow decreases with distance from the surface. The problem can conveniently be divided into two parts. Firstly, heat transfer in the entry length in which the boundary layers are developing, and, secondly, heat transfer under conditions of fully developed flow. Boundary layer flow is discussed in Chapter 11. [Pg.422]

Equation 10.66 is referred to as Fick s Second Law. This also applies when up is small, corresponding to conditions where C, is always low. This equation can be solved for a number of important boundary conditions, and it should be compared with the corresponding equation for unsteady state heat transfer (equation 9.29). [Pg.592]

In the Taylor-Prandtl modification of the theory of heat transfer to a turbulent fluid, it was assumed that the heat passed directly from the turbulent fluid to the laminar sublayer and the existence of the buffer layer was neglected. It was therefore possible to apply the simple theory for the boundary layer in order to calculate the heat transfer. In most cases, the results so obtained are sufficiently accurate, but errors become significant when the relations are used to calculate heat transfer to liquids of high viscosities. A more accurate expression can be obtained if the temperature difference across the buffer layer is taken into account. The exact conditions in the buffer layer are difficult to define and any mathematical treatment of the problem involves a number of assumptions. However, the conditions close to the surface over which fluid is flowing can be calculated approximately using the universal velocity profile,(10)... [Pg.727]

The micro-channels utilized in engineering systems are frequently connected with inlet and outlet manifolds. In this case the thermal boundary condition at the inlet and outlet of the tube is not adiabatic. Heat transfer in a micro-tube under these conditions was studied by Hetsroni et al. (2004). They measured heat transfer to water flowing in a pipe of inner diameter 1.07 mm, outer diameter 1.5 mm, and 0.600 m in length, as shown in Fig. 4.2b. The pipe was divided into two sections. The development section of Lj = 0.245 m was used to obtain fully developed flow and thermal fields. The test section proper, of heating length Lh = 0.335 m, was used for collecting the experimental data. [Pg.149]

The analysis of the behavior of the fluid temperature and the Nusselt number performed for a circular tube at the thermal wall boundary condition 7(v = const, also reflects general features of heat transfer in micro-channels of other geometries. [Pg.168]

One particular characteristic of conduction heat transfer in micro-channel heat sinks is the strong three-dimensional character of the phenomenon. The smaller the hydraulic diameter, the more important the coupling between wall and bulk fluid temperatures, because the heat transfer coefficient becomes high. Even though the thermal wall boundary conditions at the inlet and outlet of the solid wall are adiabatic, for small Reynolds numbers the heat flux can become strongly non-uniform most of the flux is transferred to the fluid at the entrance of the micro-channel. Maranzana et al. (2004) analyzed this type of problem and proposed the model of channel flow heat transfer between parallel plates. The geometry shown in Fig. 4.15 corresponds to a flow between parallel plates, the uniform heat flux is imposed on the upper face of block 1 the lower face of block 0 and the side faces of both blocks... [Pg.174]

A variety of studies can be found in the literature for the solution of the convection heat transfer problem in micro-channels. Some of the analytical methods are very powerful, computationally very fast, and provide highly accurate results. Usually, their application is shown only for those channels and thermal boundary conditions for which solutions already exist, such as circular tube and parallel plates for constant heat flux or constant temperature thermal boundary conditions. The majority of experimental investigations are carried out under other thermal boundary conditions (e.g., experiments in rectangular and trapezoidal channels were conducted with heating only the bottom and/or the top of the channel). These experiments should be compared to solutions obtained for a given channel geometry at the same thermal boundary conditions. Results obtained in devices that are built up from a number of parallel micro-channels should account for heat flux and temperature distribution not only due to heat conduction in the streamwise direction but also conduction across the experimental set-up, and new computational models should be elaborated to compare the measurements with theory. [Pg.187]

Peaking and Non-isothermal Polymerizations. Biesenberger a (3) have studied the theory of "thermal ignition" applied to chain addition polymerization and worked out computational and experimental cases for batch styrene polymerization with various catalysts. They define thermal ignition as the condition where the reaction temperature increases rapidly with time and the rate of increase in temperature also increases with time (concave upward curve). Their theory, computations, and experiments were for well stirred batch reactors with constant heat transfer coefficients. Their work is of interest for understanding the boundaries of stability for abnormal situations like catalyst mischarge or control malfunctions. In practice, however, the criterion for stability in low conversion... [Pg.75]

The heat transfer model, energy and material balance equations plus boundary condition and initial conditions are shown in Figure 4. The energy balance partial differential equation (PDE) (Equation 10) assumes two dimensional axial conduction. Figure 5 illustrates the rectangular cross-section of the composite part. Convective boundary conditions are implemented at the interface between the walls and the polymer matrix. [Pg.261]

Figure 4. Heat transfer model, energy and material balance equations, boundary and initial conditions plus physical properties. Figure 4. Heat transfer model, energy and material balance equations, boundary and initial conditions plus physical properties.
Figure 3 illustrates some additional capability of the flow code. Here no pressure gradient is Imposed (this is then drag or "Couette flow only), but we also compute the temperatures resulting from Internal viscous dissipation. The shear rate in this case is just 7 — 3u/3y — U/H. The associated stress is.r — 177 = i/CU/H), and the thermal dissipation is then Q - r7 - i/CU/H). Figure 3 also shows the temperature profile which is obtained if the upper boundary exhibits a convective rather than fixed condition. The convective heat transfer coefficient h was set to unity this corresponds to a "Nusselt Number" Nu - (hH/k) - 1. [Pg.274]

Figure 3. Finite element simulation of plane Couette flow with thermal dissipation and conductive heat transfer. (f) — fixed temperature condition (c) — convective boundary condition. Figure 3. Finite element simulation of plane Couette flow with thermal dissipation and conductive heat transfer. (f) — fixed temperature condition (c) — convective boundary condition.
The boundary conditions are as follows In Figure 3.2.2, z-axis component and r-axis component velocities are zero for (1) and (2), respectively. The gradients of other variables are zero for both the boundaries. The gradients of all variables are zero for (3) and (4). No slip condition and heat transfer from the flame kernel to the spark electrode are assumed for (5) and (6), at the surface of spark electrode. [Pg.27]


See other pages where Heat transfer boundary conditions is mentioned: [Pg.100]    [Pg.560]    [Pg.386]    [Pg.866]    [Pg.564]    [Pg.192]    [Pg.101]    [Pg.99]    [Pg.2]    [Pg.495]    [Pg.496]    [Pg.95]    [Pg.1104]    [Pg.9]    [Pg.813]    [Pg.27]    [Pg.378]    [Pg.685]    [Pg.92]    [Pg.148]    [Pg.174]    [Pg.174]    [Pg.176]    [Pg.186]    [Pg.325]    [Pg.329]    [Pg.331]    [Pg.342]    [Pg.293]    [Pg.328]    [Pg.368]    [Pg.494]   


SEARCH



Heat boundary conditions

© 2024 chempedia.info