Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boronic acids, protection

The Suzuki coupling of arylboronic acids and aryl halides has proven to be a useful method for preparing C-aryl indoles. The indole can be used either as the halide component or as the boronic acid. 6-Bromo and 7-bromoindolc were coupled with arylboronic acids using Pd(PPh3)4[5]. No protection of the indole NH was necessary. 4-Thallated indoles couple with aryl and vinyl boronic acides in the presence of Pd(OAc)j[6]. Stille coupling between an aryl stannane and a haloindole is another option (Entry 5, Table 14.3). [Pg.143]

Although boronates are quite susceptible to hydrolysis, they have been useful for the protection of carbohydrates. Note that as the steric demands of the diol increase, the rate of hydrolysis decreases. For example, pinacol boronates are rather difficult to hydrolyze in fact, they can be isolated from aqueous systems with no hydrolysis. The section on the protection of boronic acids should be consulted. [Pg.243]

Boronic esters are easily prepared from a diol and the boronic acid with removal of water, either chemically or azeotropically. (See Chapter 2 on the protection of diols.) Sterically hindered boronic esters, such as those of pinacol, can be prepared in the presence of water. Boronic esters of simple unhindered diols are quite sensitive to water and hydrolyze readily. On the other hand, very hindered esters, such as the pinacol and pinanediol derivatives, are exceedingly difficult to hydrolyze and often require rather harsh conditions to achieve cleavage. [Pg.452]

In this method, Furstner converts N-BOC protected pyrrole to the 2,5-dibromo compound (122) with NBS and this is followed by metalation and carbomethoxylation with t-butyl lithium in THF and subsequent trapping of the metalated species with methyl chloroformate to yield a pyrrole diester (123). Bromination of this diester at positions 3 and 4 with bromine in water followed by Suzuki cross-coupling with 3,4,5-trimethoxyphenyl boronic acid yields the symmetrical tetrasubstituted pyrrole (125). Base-mediated N-alkylation of this pyrrole with 4-methoxyphenethyl bromide produces the key Boger diester (126) and thereby constitutes a relay synthesis of permethyl storniamide A (120). [Pg.98]

The medicinal importance of 2-aryltryptamines led Chu and co-workers to develop an efficient route to these compounds (130) via a Pd-catalyzed cross-coupling of protected 2-bromotryptamines 128 with arylboronic acids 129 [137]. Several Suzuki conditions were explored and only a partial listing of the arylboronic acids is shown here. In addition, boronic acids derived from naphthalene, isoquinoline, and indole were successfully coupled with 128. The C-2 bromination of the protected tryptamines was conveniently performed using pyridinium hydrobromide perbromide (70-100%). 2-Phenyl-5-(and 7-)azaindoles have been prepared via a Suzuki coupling of the corresponding 2-iodoazaindoles [19]. [Pg.101]

Boronic acid hnkers (Tab. 3.6) are useful for the attachment of diols, the protection of glycosides [105] or as precursors for the metal-mediated cleavage [106]. The boronates formed are sensitive to water and simple hydrolysis is sufficient for cleavage. Recently, Carreaux and Carboni developed a new boronate-based strategy for traceless sohd-phase synthesis of aromatic compounds [107]. [Pg.144]

The protected diol side-chain of 456 is introduced by asymmetric dihydroxylation and directs diastereoselectivity in the formation of 457 and 458 by lithiation. The most acidic position of 456, between the two methoxy groups, is first protected by silylation. Suzuki coupling of 459 with the boronic acid 460 gives the kinetic product 461—the more severe hindrance to bond rotation in this compound does not allow equilibration to the more stable atropisomer of the biaryl under the conditions of the reaction. [Pg.594]

Vilsmeier reaction of 2-oxindole (830) afforded 2-chloroindole-3-carbaldehyde (891). Suzuki cross-coupling of 891 with furan-3-boronic acid (1124), followed by protection of the indole nitrogen with benzyloxymethyl (BOM) chloride, led to... [Pg.309]

The synthesis of losartan potassium (1) by the process research chemists at Merck is outlined in the following (Griffiths et ak, 1999 Larsen et al., 1994). Phenyltetrazole (8) is protected as the trityl phenyltetrazole 9 (Scheme 9.3). Ortho-lithiation of 9 followed by quenching with triisopropyl borate afforded boronic acid 10 after treatment with aqueous ammonium chloride. Reaction of glycine (11) with methyl pentanimidate (12) in a methanol/water mixture yielded (pentanimidoylamino) acetic acid (13), which underwent a Vilsmeier reaction with phosphorous oxychloride in DMF followed by hydrolysis to give imidazole-4-carbaldehyde 14 in moderate yield. [Pg.133]

The synthesis of llZ-retinal required the boronic-partner, which was prepared from 2-butyn-l-ol by addition of the tributylstannyl cuprate (83%), followed by protection of the alcohol with tBuMe2SiCl (TBDMSC1) (93%). The tributylstannyl group was substituted with boronic acid in three steps lithiation, quenching alkenyllithium with triisopropyl boronate and hydrolysis to the boronic acid. The Suzuki coupling of the C 6 tetraene with the boronic compound was carried out in THF at room temperature, in the presence of a catalytic amount of... [Pg.99]

A synthetic procedure 33 has been developed for the preparation of boronic acids with a protected aldehyde side chain, 2-(l,3-dioxolan-2-yl)ethyl, which is readily converted into boroOrn peptides similar to 30. Peptides containing boroLys were prepared by a series of reactions analogous to those used for the preparation of 30 except 4-bromobut-l-ene was used as starting material in place of 3-bromoprop-l -ene 36 ... [Pg.279]

A diastereoselective Rh(I)-catalysed conjugate addition reaction of aryl- and alkenyl-boronic acids to unprotected 2-phenyl-4-hydroxycyclopentenone (207) has been investigated. The free OH group on the substrate was found to be responsible for the (g) stereochemistry, which is cis for arylboronic derivatives (208). In the case of the alkenylboronic compounds, the stereochemistry can be tuned to either a cis (with a base as additive) or trans addition (209) (with CsF as additive), without the need for protecting groups.249... [Pg.338]

Enantiomerically enriched a-hydroxy acetals are interesting synthons and can be transformed to a variety of chiral building blocks such as 1,2-diols, a-hydroxy acids, or 1,2-amino alcohols (Scheme 18.4). Whereas the oxidation to (f )-ethyl lactate was rather difficult and required the protection of the OH group, the reduction could be easily accomplished after hydrolysis of the acetal. No significant racemization was observed. With a boronic acid derivative and a secondary amine as described by Petasis and Zavialov,24 it was also possible to synthesize an amino alcohol with high diastereoselectivity. [Pg.351]


See other pages where Boronic acids, protection is mentioned: [Pg.31]    [Pg.249]    [Pg.776]    [Pg.776]    [Pg.29]    [Pg.31]    [Pg.249]    [Pg.776]    [Pg.776]    [Pg.29]    [Pg.372]    [Pg.452]    [Pg.453]    [Pg.15]    [Pg.199]    [Pg.109]    [Pg.110]    [Pg.177]    [Pg.284]    [Pg.287]    [Pg.230]    [Pg.114]    [Pg.379]    [Pg.252]    [Pg.461]    [Pg.272]    [Pg.277]    [Pg.277]    [Pg.279]    [Pg.279]    [Pg.437]    [Pg.21]    [Pg.344]    [Pg.8]    [Pg.449]   
See also in sourсe #XX -- [ Pg.643 ]




SEARCH



Carbohydrates protection with boronic acids

Protection of boronic acids

© 2024 chempedia.info