Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Born-Oppenheimer approximations nuclear coordinates

The quaniity, (R). the sum of the electronic energy computed 111 a wave funciion calculation and the nuclear-nuclear coulomb interaciion .(R.R), constitutes a potential energy surface having 15X independent variables (the coordinates R j. The independent variables are the coordinates of the nuclei but having made the Born-Oppenheimer approximation, we can think of them as the coordinates of the atoms in a molecule. [Pg.164]

Use of the Born-Oppenheimer approximation is implicit for any many-body problem involving electrons and nuclei as it allows us to separate electronic and nuclear coordinates in many-body wave function. Because of the large difference between electronic and ionic masses, the nuclei can be treated as an adiabatic background for instantaneous motion of electrons. So with this adiabatic approximation the many-body problem is reduced to the solution of the dynamics of the electrons in some frozen-in configuration of the nuclei. However, the total energy calculations are still impossible without making further simplifications and approximations. [Pg.19]

We wanted to extend this approach to include dynamical effects on line shapes. As discussed earlier, for this approach one needs a trajectory co t) for the transition frequency for a single chromophore. One could extract a water cluster around the HOD molecule at every time step in an MD simulation and then perform an ab initio calculation, but this would entail millions of such calculations, which is not feasible. Within the Born Oppenheimer approximation the OH stretch potential is a functional of the nuclear coordinates of all the bath atoms, as is the OH transition frequency. Of course we do not know the functional. Suppose that the transition frequency is (approximately) a function of a one or more collective coordinates of these nuclear positions. A priori we do not know which collective coordinates to choose, or what the function is. We explored several such possibilities, and one collective coordinate that worked reasonably well was simply the electric field from all the bath atoms (assuming the point charges as assigned in the simulation potential) on the H atom of the HOD molecule, in the direction of the OH bond. [Pg.72]

As already noted, in the Born-Oppenheimer approximation, the nuclear motion of the system is subject to a potential which expresses the isotope independent electronic energy as a function of the distortion of the coordinates from the position of the transition state. An analysis of the motions of the N-atom transition state leads to three translations, three rotations (two for a linear molecule), and 3N - 6 (3N- 5 for a linear transition state) vibrations, one which is an imaginary frequency (e.g. v = 400icm 1 where i = V—T), and the others are real vibrational frequencies. The imaginary frequency corresponds to motion along the so-called reaction... [Pg.120]

Background Philosophy. Within the framework of the Born-Oppenheimer approximation (JJ ), the solutions of the Schroedin-ger equation, Hf = Ef, introduce the concept of molecular structure and, thereby, the total energy hyperspace provided that the electronic wave function varies only slowly with the nuclear coordinates, electronic energies can be calculated for sets of fixed nuclear positions. The total energies i.e. the sums of electronic energy and the energy due to the electrostatic re-... [Pg.141]

Representing the molecular potential energy as an analytic function of the nuclear coordinates in this fashion implicitly invokes the Born-Oppenheimer approximation in separating the very fast electronic motions from the much slower ones of the nuclei. [Pg.72]

Using the Born-Oppenheimer approximation, electronic structure calculations are performed at a fixed set of nuclear coordinates, from which the electronic wave functions and energies at that geometry can be obtained. The first and second derivatives of the electronic energies at a series of molecular geometries can be computed and used to find energy minima and to locate TSs on a PES. [Pg.967]

The Born-Oppenheimer approximation may then be thought of as keeping the electronic eigenfunctions independent and not allowing them to mix under the nuclear coordinates. This may be seen by expanding the total molecular wavefunction using the adiabatic eigenfunctions as a basis... [Pg.354]

In the Born-Oppenheimer approximation, the molecular wave function is the product of electronic and nuclear wave functions see (4.90). We now examine the behavior of if with respect to inversion. We must, however, exercise some care. In finding the nuclear wave functions fa we have used a set of axes fixed in space (except for translation with the molecule). However, in dealing with if el (Sections 1.19 and 1.20) we defined the electronic coordinates with respect to a set of axes fixed in the molecule, with the z axis being the internuclear axis. To find the effect on if of inversion of all nuclear and electronic coordinates, we must use the set of space-fixed axes for both fa and if el. We shall call the space-fixed axes X, Y, and Z, and the molecule-fixed axes x, y, and z. The nuclear wave function of a diatomic molecule has the (approximate) form (4.28) for 2 electronic states, where q=R-Re, and where the angles are defined with respect to space-fixed axes. When we replace each nuclear coordinate in fa by its negative, the internuclear distance R is unaffected, so that the vibrational wave function has even parity. The parity of the spherical harmonic Yj1 is even or odd according to whether J is even or odd (Section 1.17). Thus the parity eigenvalue of fa is (- Yf. [Pg.342]

It is now seen that the Born-Oppenheimer approximation is equivalent to the first step in a self-consistent field formulation, for the electronic motion is taken to be strongly correlated with the nuclear configuration. First the nuclei are placed in a fixed configuration and the electronic equation (4-4) is solved. Then the nuclei are assumed to move in an average potential field En(Q) + V(Q) arising from the electronic energy parametrized by the nuclear coordinates. The self-consistency ends at this point. [Pg.186]

The Born-Oppenheimer approximation permits the molecular Hamiltonian H to be separated into a component H, that depends only on the coordinates of the electrons relative to the nuclei, plus a component depending upon the nuclear coordinates. This in turn can be wriuen as a sum Hr + H, of terms for vibrational and rotational motion of ihe nuclei. [Pg.1037]

In addition, we assume, for the systems of interest here, that the electronic motion is fast relative to the kinetic motion of the nuclei and that the total wave functions can be separated into a product form, with one term depending on the electronic motion and parametric in the nuclear coordinates and a second term describing the nuclear motion in terms of adiabatic potential hypersurfaces. This separation, based on the relative mass and velocity of an electron as compared with the nucleus mass and velocity, is known as the Born-Oppenheimer approximation. [Pg.229]

A minimum, local or global, on a potential energy surface. Any small change of the nuclear coordinates on the (3 AT - 6)-dimensional surface will lead to an increase in strain energy, i.e., there is always a force driving the molecule back to this minimum (see energy surface, Born-Oppenheimer approximations, saddle point). [Pg.181]

So and Si are the electronic wavefunctions in states 0 and 1, respectively. 0 is the initial nuclear wavefunction in the electronic ground state and the 4/i are the bound vibrational wavefunctions in electronic state 1. The corresponding energies are Eo and Ei, respectively. The vector q comprises all electronic coordinates. 4>o(t) and i(t) represent the corresponding nuclear wavepackets in state 0 and 1, respectively. Equations (16.1) and (16.2) are the analogues of (2.9). Within the Born-Oppenheimer approximation it is assumed that there is no nonadiabatic coupling between the two electronic manifolds. [Pg.368]

The adiabatic approximation means the neglect of the nuclear motion in the Schrodinger equation. The electronic structure is thus calculated for a set of fixed nuclear coordinates. This approach can in principle be exact if one uses the set of wave functions for fixed nuclear coordinates as a basis set for the full Schrodinger equation, and solves the nuclear motion on this basis. The adiabatic approximation stops at the step before. (The Born-Oppenheimer approximation assumes a specific classical behavior of the nuclei and hence it is more approximate than the adiabatic approximation.)... [Pg.241]

The field gradient is measured at a fixed point within the molecule, the translational part of the wave-function is thus of no consequence for (qap)-The effect of molecular rotation does, however, modify (qap) but the relationship between the rotating and stationary (qap) s has already been treated in the chapter dealing with microwave spectroscopy. In the present context, we are interested in the field gradients in a vibrating molecule in a fixed coordinate system. The Born-Oppenheimer approximation for molecular wave-functions enables us to separate the nuclear and electronic motions, the electronic wave functions being calculated for the nuclei in various fixed positions. The observed (qap) s will then be average values over the vibrational motion. [Pg.156]

In chapter 2 we discussed at length the separation of nuclear and electronic coordinates in the solution of the Schrodinger equation. We described the Born-Oppenheimer approximation which allows us to solve the Schrodinger equation for the motion of the electrons in the electrostatic field produced by fixed nuclear charges. There are certain situations, particularly with polyatomic molecules, when the separation of nuclear and electronic motions cannot be made satisfactorily, but with most diatomic molecules the Born-Oppenheimer separation is acceptable. The discussion of molecular electronic wave functions presented in this chapter is therefore based upon the Born-Oppenheimer approximation. [Pg.197]


See other pages where Born-Oppenheimer approximations nuclear coordinates is mentioned: [Pg.106]    [Pg.278]    [Pg.289]    [Pg.96]    [Pg.112]    [Pg.363]    [Pg.260]    [Pg.42]    [Pg.99]    [Pg.120]    [Pg.21]    [Pg.106]    [Pg.3]    [Pg.27]    [Pg.96]    [Pg.98]    [Pg.97]    [Pg.100]    [Pg.101]    [Pg.187]    [Pg.242]    [Pg.19]    [Pg.34]    [Pg.36]    [Pg.147]    [Pg.341]    [Pg.169]    [Pg.65]    [Pg.28]    [Pg.6]    [Pg.9]    [Pg.106]    [Pg.106]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Born approximation

Born-Oppenheimer approximation

Nuclear coordinate

Oppenheimer approximation

© 2024 chempedia.info