Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Born-Oppenheimer approximation, molecular

Both molecular and quantum mechanics methods rely on the Born-Oppenheimer approximation. In quantum mechanics, the Schrodinger equation (1) gives the wave functions and energies of a molecule. [Pg.11]

The total energy in an Molecular Orbital calculation is the net result of electronic kinetic energies and the interactions between all electrons and atomic cores in the system. This is the potential energy for nuclear motion in the Born-Oppenheimer approximation (see page 32). [Pg.130]

The Born-Oppenheimer approximation is the first of several approximations used to simplify the solution of the Schradinger equation. It simplifies the general molecular problem by separating nuclear and electronic motions. This approximation is reasonable since the mass of a typical nucleus is thousands of times greater than that of an electron. The nuclei move very slowly with respect to the electrons, and the electrons react essentially instantaneously to changes in nuclear position. Thus, the electron distribution within a molecular system depends on the positions of the nuclei, and not on their velocities. Put another way, the nuclei look fixed to the electrons, and electronic motion can be described as occurring in a field of fixed nuclei. [Pg.256]

There are phenomena such as the Renner and the Jahn-Teller effects where the Bom-Oppenheimer approximation breaks down, hut for the vast majority of chemical applications the Born-Oppenheimer approximation is a vital one. It has a great conceptual importance in chemistry without it we could not speak of a molecular geometry. [Pg.75]

The concept of a potential energy surface has appeared in several chapters. Just to remind you, we make use of the Born-Oppenheimer approximation to separate the total (electron plus nuclear) wavefunction into a nuclear wavefunction and an electronic wavefunction. To calculate the electronic wavefunction, we regard the nuclei as being clamped in position. To calculate the nuclear wavefunction, we have to solve the relevant nuclear Schrddinger equation. The nuclei vibrate in the potential generated by the electrons. Don t confuse the nuclear Schrddinger equation (a quantum-mechanical treatment) with molecular mechanics (a classical treatment). [Pg.230]

The applicability of the Born-Oppenheimer approximation for complex molecular systems is basic to all classical simulation methods. It enables the formulation of an effective potential field for nuclei on the basis of the SchrdJdinger equation. In practice this is not simple, since the number of electrons is usually large and the extent of configuration space is too vast to allow accurate initio determination of the effective fields. One has to resort to simplifications and semi-empirical or empirical adjustments of potential fields, thus introducing interdependence of parameters that tend to obscure the pure significance of each term. This applies in... [Pg.107]

Chemical reactions of molecules at metal surfaces represent a fascinating test of the validity of the Born-Oppenheimer approximation in chemical reactivity. Metals are characterized by a continuum of electronic states with many possible low energy excitations. If metallic electrons are transferred between electronic states as a result of the interactions they make with molecular adsorbates undergoing reaction at the surface, the Born-Oppenheimer approximation is breaking down. [Pg.386]

Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)... Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)...
Most semi-empirical models are based on the fundamental equations of Hartree-Fock theory. In the following section, we develop these equations for a molecular system composed of A nuclei and N electrons in the stationary state. Assuming that the atomic nuclei are fixed in space (the Born-Oppenheimer approximation), the electronic wavefunction obeys the time-independent Schrodinger equation ... [Pg.12]

One branch of chemistry where the use of quantum mechanics is an absolute necessity is molecular spectroscopy. The topic is interaction between electromagnetic waves and molecular matter. The major assumption is that nuclear and electronic motion can effectively be separated according to the Born-Oppenheimer approximation, to be studied in more detail later on. The type of interaction depends on the wavelength, or frequency of the radiation which is commonly used to identify characteristic regions in the total spectrum, ranging from radio waves to 7-rays. [Pg.280]

To be specific we consider electron transfer from a reactant in a solution, such as [Fe(H20)6]2+, to an acceptor, which may be a metal or semiconductor electrode, or another molecule. To obtain wavefunc-tions for the reactant in its reduced and oxidized state, we rely on the Born-Oppenheimer approximation, which is commonly used for the calculation of molecular properties. This approximation is based on the fact that the masses of the nuclei in a molecule are much larger than the electronic mass. Hence the motion of the nuclei is slow, while the electrons are fast and follow the nuclei almost instantaneously. The mathematical consequences will be described in the following. [Pg.259]

The transition from (1) and (2) to (5) is reversible each implies the other if the variations 5l> admitted are completely arbitrary. More important from the point of view of approximation methods, Eq. (1) and (2) remain valid when the variations 6 in a trial function are constrained in some systematic way whereas the solution of (5) subject to model or numerical approximations is technically much more difficult to handle. By model approximation we shall mean an approximation to the form of as opposed to numerical approximations which are made at a lower level once a model approximation has been made. That is, we assume that H, the molecular Hamiltonian is fixed (non-relativistic, Born-Oppenheimer approximation which itself is a model in a wider sense) and we make models of the large scale electronic structure by choice of the form of and then compute the detailed charge distributions, energetics etc. within that model. [Pg.39]

Molecular Dynamics Beyond the Born-Oppenheimer Approximation. [Pg.334]

Taking the Born-Oppenheimer approximation into consideration, the molecular wave function may be written as... [Pg.222]


See other pages where Born-Oppenheimer approximation, molecular is mentioned: [Pg.4]    [Pg.380]    [Pg.499]    [Pg.338]    [Pg.161]    [Pg.265]    [Pg.164]    [Pg.106]    [Pg.383]    [Pg.390]    [Pg.391]    [Pg.59]    [Pg.68]    [Pg.69]    [Pg.70]    [Pg.71]    [Pg.83]    [Pg.86]    [Pg.97]    [Pg.99]    [Pg.584]    [Pg.363]    [Pg.6]    [Pg.139]    [Pg.339]    [Pg.78]   


SEARCH



Born approximation

Born-Oppenheimer approximation

Born-Oppenheimer approximation molecular orbitals

Born-Oppenheimer approximation molecular properties

Born-Oppenheimer approximation molecular spectroscopy

Born-Oppenheimer approximation time-dependent molecular theory

Born-Oppenheimer approximation, molecular potential energy

By Yehuda Haas and Shmuel Zilberg The Crude Born-Oppenheimer Adiabatic Approximation of Molecular Potential Energies

Direct molecular dynamics Born-Oppenheimer approximation

Molecular approximations

Molecular dynamics Born-Oppenheimer approximation

Molecular mechanics Born-Oppenheimer approximation

Molecular modelling Born-Oppenheimer approximation

Molecular structure Born-Oppenheimer approximation

Oppenheimer approximation

© 2024 chempedia.info