Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boranes, chiral structures

New chiral oxazaborolidines that have been prepared from both enantiomers of optically active inexpensive a-pinene have also given quite good results in the asymmetric borane reduction of prochiral ketones.92 Borane and aromatic ketone coordinate to this structurally rigid oxazaborolidine (+)- or (—)-94, forming a six-membered cyclic chair-like transition state (Scheme 6-41). Following the mechanism shown in Scheme 6-37, intramolecular hydride transfer occurs to yield the product with high enantioselectivity. With aliphatic ketones, poor ee is normally obtained (see Table 6-9). [Pg.370]

Chiral Dialkylboranes. Several allylic boranes have been developed as chiral auxiliary reagents (Fig. 5). The introduction of terpene-based reagents such as 12 and 64-68 has been pioneered by H.C. Brown, and the most popular class remains the bis(isopinocampheyl) derivatives (structures 12, 64-66). A wide variety of substituted analogs have been reported, including the popular crotylboranes but also a number of other reagents bearing heteroatom-... [Pg.33]

Enantioselective condensation of aldehydes and enol silyl ethers is promoted by addition of chiral Lewis acids. Through coordination of aldehyde oxygen to the Lewis acids containing an Al, Eu, or Rh atom (286), the prochiral substrates are endowed with high electrophilicity and chiral environments. Although the optical yields in the early works remained poor to moderate, the use of a chiral (acyloxy)borane complex as catalyst allowed the erythro-selective condensation with high enan-tioselectivity (Scheme 119) (287). This aldol-type reaction may proceed via an extended acyclic transition state rather than a six-membered pericyclic structure (288). Not only ketone enolates but ester enolates... [Pg.123]

Organometallic compounds asymmetric catalysis, 11, 255 chiral auxiliaries, 266 enantioselectivity, 255 see also specific compounds Organozinc chemistry, 260 amino alcohols, 261, 355 chirality amplification, 273 efficiency origins, 273 ligand acceleration, 260 molecular structures, 276 reaction mechanism, 269 transition state models, 264 turnover-limiting step, 271 Orthohydroxylation, naphthol, 230 Osmium, olefin dihydroxylation, 150 Oxametallacycle intermediates, 150, 152 Oxazaborolidines, 134 Oxazoline, 356 Oxidation amines, 155 olefins, 137, 150 reduction, 5 sulfides, 155 Oxidative addition, 5 amine isomerization, 111 hydrogen molecule, 16 Oxidative dimerization, chiral phenols, 287 Oximes, borane reduction, 135 Oxindole alkylation, 338 Oxiranes, enantioselective synthesis, 137, 289, 326, 333, 349, 361 Oxonium polymerization, 332 Oxo process, 162 Oxovanadium complexes, 220 Oxygenation, C—H bonds, 149... [Pg.196]

The characteristic feature of the aforementioned oxazaborolidine catalyst system consists of a-sulfonamide carboxylic acid ligand for boron reagent, where the five-membered ring system seems to be the major structural feature for the active catalyst. Accordingly, tartaric acid-derived chiral (acyloxy)borane (CAB) complexes can also catalyze the asymmetric Diels-Alder reaction of a,P-unsaturated aldehydes with a high level of asymmetric induction [10] (Eq. 8A.4). Similarly, a chiral tartrate-derived dioxaborolidine has been introduced as a catalyst for enantioselective Diels-Alder reaction of 2-bromoacrolein [11] (Eq. 8A.5). [Pg.468]

Chiral C2-symmetric boron bis(oxazolines) act as enantioselective catalysts in the reduction of ketones promoted by catecholborane.321 DFT calculations indicate that the stereochemical outcome is determined by such catalysts being able to bind both the ketone and borane reducing agent, activating the latter as a hydride donor, while also enhancing the electrophilicity of the carbonyl. X-ray structures of catalyst-catechol complexes are also reported. [Pg.40]

Researchers at Sepracor later disclosed the use of a new class of chiral oxazaborolidines derived from r/. v-aminoindanol in the enantioselective borane reduction of a-haloketones.6,7 The 5-hydrogen oxazaborolidine ligand 10 was prepared in situ from d,v-aminoindanol 1 and BH3 THF.8 Stock solutions of 5-methyl oxazaborolidine 11-16 were obtained by reaction of the corresponding N-alkyl aminoindanol with trimethyl boroxine.6,7 5-Methyl catalyst 11 was found to be more selective (94% ee at 0°C) than the 5-hydrogen catalyst 10 (89% ee at 0°C), and enantioselectivities with 11 increased at lower temperatures (96% ee at -20°C). The catalyst structure was modified by introduction of A-a I kyI substituents. As a general trend, reactivities and selectivities decreased as the steric bulk or the chelating ability of the A -alkyl substituent increased (Scheme 17.4). [Pg.323]

The second approach is more tedious and more expensive, but may provide a reagent with ideal structural features. To date the approach has been used only for generation of chiral r/ a/ij-2,5-dimethylboro-lane (Figure 10), the synthesis of which involves initial production of the ring system as a mixture of cis and trans isomers, separation and resolution of the pure trans compound, and then manipulation of the boron-bound group to obtain the free borane. ... [Pg.721]

The chemistry of secondary phosphine oxides, R2P(H)0 and their phosphi-nous acid tautomers, R2POH, has continued to attract attention. The study of the phosphinous acid tautomers has been aided by the development of stereoselective procedures for direct conversion of secondary phosphine oxides to the phosphinous acid-boranes (83). Treatment of the secondary phosphine oxide with either a base-borane complex or boron trifluoride and sodium borohyd-ride provides the phosphinous acid-borane with predominant inversion of configuration at phosphorus. The phosphinous acid tautomers are usually trapped as ligands in metal complexes and further examples of this behaviour have been noted. Discrimination of enantiomeric forms of chiral phosphinous acids, Ph(R)OH, coordinated to a chiral rhodium complex, has been studied by NMR. °° Palladium complexes of di(t-butyl)phosphinous acid have found application as homogeneous catalysts.A lithium salt of the tellurophos-phinite Ph2PTeH has been prepared and structurally characterised. ... [Pg.238]

As has been the pattern in recent years, there has been considerable interest in the synthesis and characterisation of phosphide reagents derived from metals other than lithium, sodium, and potassium, and also in studies of the structure of metallophosphides in the solid state. A new route to P-chiral phosphine-boranes of high enantiopurity is afforded by treatment of the borane complexes of methyl(phenyl)phosphine with a copper(I) reagent, giving the copper-phosphido intermediate (83), which, on subsequent treatment with an iodoarene in the presence of a palladium(O) catalyst, gives the related chiral t-phosphine-borane (84), with retention of configuration at phosphorus. Organophosphido systems... [Pg.8]

Diazaborolidines that are structurally analogous to oxazaborolidine were prepared from a chiral diamine and borane [109]. Their catalytic activity is similar to that of oxazaborolidine. iV-Sulfonyldiazaborolidine derived from 2-amino-methylpiperidine was used in the reduction of acetophenone (>95% 72% ee)... [Pg.308]


See other pages where Boranes, chiral structures is mentioned: [Pg.192]    [Pg.164]    [Pg.7]    [Pg.18]    [Pg.23]    [Pg.111]    [Pg.46]    [Pg.211]    [Pg.43]    [Pg.68]    [Pg.1052]    [Pg.42]    [Pg.410]    [Pg.87]    [Pg.38]    [Pg.48]    [Pg.233]    [Pg.100]    [Pg.288]    [Pg.289]    [Pg.393]    [Pg.13]    [Pg.16]    [Pg.28]    [Pg.82]    [Pg.319]    [Pg.355]    [Pg.359]    [Pg.84]    [Pg.88]    [Pg.175]    [Pg.10]    [Pg.75]    [Pg.914]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Borane, structures

Boranes structure

Chiral structure

Structural chirality

Structure Chirality

© 2024 chempedia.info