Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers polarity

Group-Transfer Polymerization. Living polymerization of acrylic monomers has been carried out using ketene silyl acetals as initiators. This chemistry can be used to make random, block, or graft copolymers of polar monomers. The following scheme demonstrates the synthesis of a methyl methacrylate—lauryl methacrylate (MMA—LMA) AB block copolymer (38). LMA is CH2=C(CH2)COO(CH2) CH2. [Pg.181]

All these elastomers, especially poly(ethylene- (9-butylene) and poly(ethylene- (9-propylene), are nonpolar. The corresponding block copolymers can thus be compounded with hydrocarbon-based extending oils, but do not have much oil resistance. Conversely, block copolymers with polar polyester or polyether elastomer segments have Htde affinity for such hydrocarbon oils and so have better oil resistance. [Pg.14]

Commercially, anionic polymerization is limited to three monomers styrene, butadiene, and isoprene [78-79-5], therefore only two useful A—B—A block copolymers, S—B—S and S—I—S, can be produced direcdy. In both cases, the elastomer segments contain double bonds which are reactive and limit the stabhity of the product. To improve stabhity, the polybutadiene mid-segment can be polymerized as a random mixture of two stmctural forms, the 1,4 and 1,2 isomers, by addition of an inert polar material to the polymerization solvent ethers and amines have been suggested for this purpose (46). Upon hydrogenation, these isomers give a copolymer of ethylene and butylene. [Pg.15]

Multiblock Copolymers. Replacement of conventional vulcanized mbber is the main appHcation for the polar polyurethane, polyester, and polyamide block copolymers. Like styrenic block copolymers, they can be molded or extmded using equipment designed for processing thermoplastics. Melt temperatures during processing are between 175 and 225°C, and predrying is requited scrap is reusable. They are mostiy used as essentially pure materials, although some work on blends with various thermoplastics such as plasticized and unplasticized PVC and also ABS and polycarbonate (14,18,67—69) has been reported. Plasticizers intended for use with PVC have also been blended with polyester block copolymers (67). [Pg.19]

Thermoplastic elastomeric behavior requires that the block copolymer develop a microheterogeneous two-phase network morphology. Theory predicts that microphase separation will occur at shorter block lengths as the polarity difference between the A and B blocks increases. This prediction is borne out as the block lengths required for the polyether-polyurethane, polyester-polyurethane, and polyether-polyester multiblock copolymers to exhibit thermoplastic elastomeric behavior are considerably shorter than for the styrene-diene-styrene triblock copolymers. [Pg.31]

The results of the block copolymerization of St, MMA, AA, and VAc with the polymers obtained by 7 and 8 are shown in Table 3. The yields of the block copolymers with 42 and 43 were as high as 70-90%. These block copolymer syntheses are advantageous for the synthesis of the polymer consisting of many kinds of vinyl monomer units, especially polar and functional monomers. [Pg.105]

A special class ofblock copolymers with blocks of very different polarity is known as amphiphilic (Figure 10.1). In general, the word amphiphile is used to describe molecules that stabilize the oil-water interface (e.g., surfactants). To a certain extent, amphiphilic block copolymers allow the generalization of amphi-philicity. This means that molecules can be designed that stabilize not only the oil-water interface but any interface between different materials with different cohesion energies or surface tensions (e.g., water-gas, oil-gas, polymer-metal, or polymer-polymerinterfaces). This approach is straightforward, since the wide variability of the chemical structure of polymers allows fine and specific adjustment of both polymer parts to any particular stabilization problem. [Pg.151]


See other pages where Block copolymers polarity is mentioned: [Pg.170]    [Pg.269]    [Pg.451]    [Pg.189]    [Pg.19]    [Pg.483]    [Pg.484]    [Pg.557]    [Pg.716]    [Pg.723]    [Pg.749]    [Pg.631]    [Pg.270]    [Pg.359]    [Pg.26]    [Pg.52]    [Pg.254]    [Pg.31]    [Pg.147]    [Pg.149]    [Pg.407]    [Pg.259]    [Pg.267]    [Pg.270]    [Pg.276]    [Pg.207]    [Pg.268]    [Pg.266]    [Pg.490]    [Pg.25]    [Pg.96]    [Pg.190]    [Pg.194]    [Pg.197]    [Pg.96]    [Pg.83]    [Pg.101]    [Pg.5]    [Pg.285]    [Pg.296]    [Pg.220]    [Pg.93]   
See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



© 2024 chempedia.info