Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bloch approximation

Using the Bloch approximation for the relaxation term dp/dt one can write, in analogy with nuclear magnetic resonance (NMR) relaxation, ... [Pg.299]

Note that the Bloch approximation (exponential decay) is only valid when the relevant times are much longer than the correlation times associated with the pertinent bath degrees of freedom. This approximation is almost always true of Ti processes, but may reach its limit for T2. In this case dephasing can... [Pg.299]

Moreover, since this effect is important only in the high-energy range, we estimated its contribution using a simple Bethe-Bloch approximation. [Pg.66]

The form of the functions may be closely similar to that of the molecular orbitals used in the simple theory of metals. If there are M interatomic positions in the crystal which might be occupied by any one of the N electron-pair bonds, then the M functions linear aggregates that approximate the solutions of the wave equation with inclusion of the interaction terms representing resonance. This combination can be effected with use of Bloch factors ... [Pg.392]

In the DC-biased structures considered here, the dynamics are dominated by electronic states in the conduction band [1]. A simplified version of the theory assumes that the excitation occurs only at zone center. This reduces the problem to an n-level system (where n is approximately equal to the number of wells in the structure), which can be solved using conventional first-order perturbation theory and wave-packet methods. A more advanced version of the theory includes all of the hole states and electron states subsumed by the bandwidth of the excitation laser, as well as the perpendicular k states. In this case, a density-matrix picture must be used, which requires a solution of the time-dependent Liouville equation. Substituting the Hamiltonian into the Liouville equation leads to a modified version of the optical Bloch equations [13,15]. These equations can be solved readily, if the k states are not coupled (i.e., in the absence of Coulomb interactions). [Pg.251]

It is important to avoid saturation of the signal during pulse width calibration. The Bloch equations predict that a delay of 5 1] will be required for complete restoration to the equilibrium state. It is therefore advisable to determine the 1] values an approximate determination may be made quickly by using the inversion-recovery sequence (see next paragraph). The protons of the sample on which the pulse widths are being determined should have relaxation times of less than a second, to avoid unnecessary delays in pulse width calibration. If the sample has protons with longer relaxation times, then it may be advisable to add a small quantity of a relaxation reagent, such as Cr(acac) or Gkl(FOD)3, to induce the nuclei to relax more quickly. [Pg.60]

The exchange part, ex, which represents the exchange energy of an electron in a uniform electron gas of a particular density is, apart from the pre-factor, equal to the form found by Slater in his approximation of the Hartree-Fock exchange (Section 3.3) and was originally derived by Bloch and Dirac in the late 1920 s ... [Pg.88]

As we shall see, all relaxation rates are expressed as linear combinations of spectral densities. We shall retain the two relaxation mechanisms which are involved in the present study the dipolar interaction and the so-called chemical shift anisotropy (csa) which can be important for carbon-13 relaxation. We shall disregard all other mechanisms because it is very likely that they will not affect carbon-13 relaxation. Let us denote by 1 the inverse of Tt. Rt governs the recovery of the longitudinal component of polarization, Iz, and, of course, the usual nuclear magnetization which is simply the nuclear polarization times the gyromagnetic constant A. The relevant evolution equation is one of the famous Bloch equations,1 valid, in principle, for a single spin but which, in many cases, can be used as a first approximation. [Pg.93]

Bloch (1933a,b) first pointed out that in the Thomas-Fermi-Dirac statistical model the spectral distribution of atomic oscillator strength has the same shape for all atoms if the transition energy is scaled by Z. Therefore, in this model, I< Z Bloch estimated the constant of proportionality approximately as 10-15 eV. Another calculation using the Thomas-Fermi-Dirac model gives I tZ = a + bZ-2/3 with a = 9.2 and b = 4.5 as best adjusted values (Turner, 1964). This expression agrees rather well with experiments. Figure 2.3 shows the variation of IIZ vs. Z. [Pg.19]

Using the long time-weak coupling approximation and the hypothesis of random phases for the thermostat, Bloch and Wangsness find, after taking the trace over the heat bath, the following equations for the reduced density matrix a ... [Pg.295]

Finally - and equally important - Jens contribution to the formal treatment of GOS based on the polarization propagator method and Bethe sum rules has been shown to provide a correct quantum description of the excitation spectra and momentum transfer in the study of the stopping cross section within the Bethe-Bloch theory. Of particular interest is the correct description of the mean excitation energy within the polarization propagator for atomic and molecular compounds. This motivated the study of the GOS in the RPA approximation and in the presence of a static electromagnetic field to ensure the validity of the sum rules. [Pg.365]

For both processes approximate equations were derived from the exact solution of the Bloch equations for the longitudinal relaxation time of a system in which water protons undergo chemical exchange between two magnetically distinct environments A and B ... [Pg.279]

In solid-state physics the opening of a gap at the zone boundary is usually studied in the free electron approximation, where the application of e.g., a ID weak periodic potential V, with period a [V x) = V x + a)], opens an energy gap at 7r/a (Madelung, 1978 Zangwill, 1988). E k) splits up at the Brillouin zone boundaries, where Bragg conditions are satished. Let us consider the Bloch function from Eq. (1.28) in ID expressed as a linear combination of plane waves ... [Pg.69]


See other pages where Bloch approximation is mentioned: [Pg.206]    [Pg.31]    [Pg.206]    [Pg.31]    [Pg.1522]    [Pg.40]    [Pg.7]    [Pg.97]    [Pg.49]    [Pg.171]    [Pg.181]    [Pg.14]    [Pg.951]    [Pg.203]    [Pg.117]    [Pg.72]    [Pg.2]    [Pg.5]    [Pg.5]    [Pg.56]    [Pg.130]    [Pg.274]    [Pg.165]    [Pg.361]    [Pg.375]    [Pg.518]    [Pg.112]    [Pg.194]    [Pg.14]    [Pg.336]    [Pg.197]    [Pg.95]    [Pg.123]    [Pg.123]   
See also in sourсe #XX -- [ Pg.299 ]




SEARCH



Bloch

Leading-Bloch-waves approximation

© 2024 chempedia.info