Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biotransformations hydroxylation

Biotransformations are carried out by either whole cells (microbial, plant, or animal) or by isolated enzymes. Both methods have advantages and disadvantages. In general, multistep transformations, such as hydroxylations of steroids, or the synthesis of amino acids, riboflavin, vitamins, and alkaloids that require the presence of several enzymes and cofactors are carried out by whole cells. Simple one- or two-step transformations, on the other hand, are usually carried out by isolated enzymes. Compared to fermentations, enzymatic reactions have a number of advantages including simple instmmentation reduced side reactions, easy control, and product isolation. [Pg.331]

By carefully examining the fragmentation pattern of the metabolite and comparison with the mass spectra of the precursor molecule, it is often possible to determine not only the nature of the biotransformation, but also its position in the molecule. In the proceeding example, accurate mass measurement was used to determine that a hydroxyl group had been added to the benzene ring containing the fluorine substituent. [Pg.250]

The metabolism of foreign compounds (xenobiotics) often takes place in two consecutive reactions, classically referred to as phases one and two. Phase I is a functionalization of the lipophilic compound that can be used to attach a conjugate in Phase II. The conjugated product is usually sufficiently water-soluble to be excretable into the urine. The most important biotransformations of Phase I are aromatic and aliphatic hydroxylations catalyzed by cytochromes P450. Other Phase I enzymes are for example epoxide hydrolases or carboxylesterases. Typical Phase II enzymes are UDP-glucuronosyltrans-ferases, sulfotransferases, N-acetyltransferases and methyltransferases e.g. thiopurin S-methyltransferase. [Pg.450]

The numerous biotransformations catalyzed by cytochrome P450 enzymes include aromatic and aliphatic hydroxylations, epoxidations of olefinic and aromatic structures, oxidations and oxidative dealkylations of heteroatoms and as well as some reductive reactions. Cytochromes P450 of higher animals may be classified into two broad categories depending on whether their substrates are primarily endogenous or xenobiotic substances. Thus, CYP enzymes of families 1-3 catalyze... [Pg.921]

In phase 1, the pollutant is converted into a more water-soluble metabolites, by oxidation, hydrolysis, hydration, or reduction. Usually, phase 1 metabolism introduces one or more hydroxyl groups. In phase 2, a water-soluble endogenous species (usually an anion) is attached to the metabolite— very commonly through a hydroxyl group introduced during phase 1. Although this scheme describes the course of most biotransformations of lipophilic xenobiotics, there can be departures from it. [Pg.24]

This enantiomeric specificity has been of interest in other contexts, and stereospecific biotransformation has been observed. Examples include the enantiomeric oxidation of sulfides to sulfoxides (Chapter 11, Part 2) and steroid and triterpene hydroxylation (Chapter 7, Part 2). [Pg.54]

Buckman AH, CS Wong, EA Chow, SB Brown, KR Solomon, AT Fisk (2006) Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish. Aquat Toxicol 78 176-185. [Pg.100]

Biotransformation with flasks can be used to make gram quantities of a desired product, as shown for the 21 -hydroxylation of epothilone B [75]. In cases when greater quantities of a metabolite are needed, microbial biotransformations can be carried out in a fermentor, which will allow better monitoring and control of fermentation conditions (such as pH, oxygen and glucose levels, etc.) for reaction optimization [76]. [Pg.215]

Compared with isolated enzymes, enzymes used in whole-cell biotransformations are often more stable due to the presence of their natural environment inside the cell. This is especially true for the enzymes involved in the oxidation and hydroxylation reactions that are labile once isolated from the cells. They are a convenient and stable source of enzymes that are often synthesized by cells in response to the presence of the substrate. [Pg.233]

Bromocriptine is rapidly and completely metabolised in animals and man. The major components of the urinary metabolites have been identified as 2-bromo-lysergic acid and 2-bro-mo-isolysergic acid. Apart from the hydrolytic cleavage of the amine bond and the isomerization at position 8 of the lysergic acid moiety, a third principal biotransformation pathway consists in the oxidative attack of the molecule at the proline fragment of the peptide part, predominantly at position 8, giving rise to the formation of a number of hydroxylated and further oxidized derivatives of bromocriptine, and in addition of conjugated derivatives thereof. [Pg.68]


See other pages where Biotransformations hydroxylation is mentioned: [Pg.76]    [Pg.282]    [Pg.122]    [Pg.16]    [Pg.76]    [Pg.282]    [Pg.122]    [Pg.16]    [Pg.429]    [Pg.430]    [Pg.432]    [Pg.53]    [Pg.267]    [Pg.268]    [Pg.202]    [Pg.328]    [Pg.961]    [Pg.231]    [Pg.232]    [Pg.233]    [Pg.238]    [Pg.239]    [Pg.249]    [Pg.26]    [Pg.118]    [Pg.51]    [Pg.52]    [Pg.76]    [Pg.93]    [Pg.205]    [Pg.219]    [Pg.341]    [Pg.409]    [Pg.567]    [Pg.648]    [Pg.200]    [Pg.205]    [Pg.229]    [Pg.229]    [Pg.234]    [Pg.238]    [Pg.869]    [Pg.1012]    [Pg.1238]   
See also in sourсe #XX -- [ Pg.680 ]




SEARCH



© 2024 chempedia.info