Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biosynthesis discussion

Biosynthesis and Metabolism.—Pathways and Reactions. Two reviews of carotenoid biosynthesis discuss, respectively, the early steps and the later reactions." The former paper deals with the mechanism of formation of phytoene and the series of desaturation reactions by which phytoene is converted into lycopene, and also describes in detail the biosynthesis of bacterial C30 carotenoids. The second paper" presents details of the mechanism and stereochemistry of cyclization and the other reactions that involve the carotenoid C-1 —C-2 double bond and the later modifications, especially the introduction of oxygen functions. [Pg.201]

Some recent reviews on bacterial glycogen synthesis " and on starch biosynthesis discuss in more detail some of the areas presented in this chapter. For the regulation of mammalian glycogen synthesis see Cohen "- and Roach. ... [Pg.431]

The enzyme catalyzed reactions that lead to geraniol and farnesol (as their pyrophosphate esters) are mechanistically related to the acid catalyzed dimerization of alkenes discussed m Section 6 21 The reaction of an allylic pyrophosphate or a carbo cation with a source of rr electrons is a recurring theme m terpene biosynthesis and is invoked to explain the origin of more complicated structural types Consider for exam pie the formation of cyclic monoterpenes Neryl pyrophosphate formed by an enzyme catalyzed isomerization of the E double bond m geranyl pyrophosphate has the proper geometry to form a six membered ring via intramolecular attack of the double bond on the allylic pyrophosphate unit... [Pg.1089]

The 20 ammo acids listed m Table 27 1 are biosynthesized by a number of different path ways and we will touch on only a few of them m an introductory way We will exam me the biosynthesis of glutamic acid first because it illustrates a biochemical process analogous to a reaction we discussed earlier m the context of amine synthesis reductive ammatwn (Section 22 10)... [Pg.1123]

Tyrocidine [8011-61-8] is a mixture of three closely related components. Tyrocidine studies on mechanism of action (98), biosynthesis on multien2yme complexes (93,99,100), and chemistry (101) are available, and tyrothricin production is discussed (102). Although the mechanism of action of linear gramicidins has been well researched, such work on tyrocidine is more limited it appears that tyrocidine damages membranes (103,104). [Pg.150]

The special topics discussed are (i) the biological aspects of heterocyclic compounds, i.e. their biosynthesis, toxicity, metabolism, role in biochemical pathways, and their uses as pharmaceuticals, agrochemicals and veterinary products (ii) the use of heterocyclic compounds in polymers, dyestuffs and pigments, photographic chemicals, semiconductors and additives of various kinds and (iii) the use of heterocyclic compounds as intermediates in the synthesis of non-heterocyclic compounds. [Pg.1]

Long-chain polyisoprenoid. molecules with a terminal alcohol moiety are called, polyprenols. The dolichols, one class of polyprenols (Figure 8.18), consist of 16 to 22 isoprene units and, in the form of dolichyl phosphates, function to carry carbohydrate units in the biosynthesis of glycoproteins in animals. Polyprenyl groups serve to anchor certain proteins to biological membranes (discussed in Chapter 9). [Pg.252]

We turn now to the biosynthesis of lipid structures. We begin with a discussion of the biosynthesis of fatty acids, stressing the basic pathways, additional means of elongation, mechanisms for the introduction of double bonds, and regulation of fatty acid synthesis. Sections then follow on the biosynthesis of glyc-erophospholipids, sphingolipids, eicosanoids, and cholesterol. The transport of lipids through the body in lipoprotein complexes is described, and the chapter closes with discussions of the biosynthesis of bile salts and steroid hormones. [Pg.802]

The enzymes that catalyze formation of acetyl-ACP and malonyl-ACP and the subsequent reactions of fatty acid synthesis are organized quite differently in different organisms. We first discuss fatty acid biosynthesis in bacteria and plants, where the various reactions are catalyzed by separate, independent proteins. Then we discuss the animal version of fatty acid biosynthesis, which involves a single multienzyme complex called fatty acid synthase. [Pg.808]

In biological reactions, the situation is different from that in the laboratory. Only one substrate molecule at a time is present in the active site of the enzyme where reaction takes place, and that molecule is held in a precise position, with coenzymes and other necessary reacting groups nearby. As a result, biological radical reactions are both more controlled and more common than laboratory or industrial radical reactions. A particularly impressive example occurs in the biosynthesis of prostaglandins from arachiclonic acid, where a sequence of four radical additions take place. The reaction mechanism was discussed briefly in Section 5.3. [Pg.243]

Mixed Claisen condensations (Section 23.8) also occur frequently in living organisms, particularly in the pathway for fatty-acid biosynthesis that we ll discuss in Section 29.4. Butyryl synthase, for instance, reacts with malonvl ACP in a mixed Claisen condensation to give 3-ketohexanoyl ACP. [Pg.902]

Cyclic acetals of pyruvic acid are common in extracellular polysaccharides (compare, for example, Ref. 6). They have also been found in some LPS, namely, those from Shigella dysenteriae type 6 and E. coli 0-149 (Ref. 139), and in the teichoic acid from Brevibacterium iodinum. The biosynthesis of these acetals has already been discussed. [Pg.304]

For most of the sugar components, little or nothing is known about their biosynthesis. Nucleoside hexosyl-4-ulose diphosphates are, however, almost certainly key intermediates in the biosynthesis of several of these sugars, as discussed in Ref 7. The biosynthesis of the 6-deoxyheptoses is probably analogous to that of the 6-deoxyhexoses, and proceeds by way of nucleoside heptosyl-4-ulose diphosphates. [Pg.318]

See D. M. Smith, 1980, for a study of flavonoid profiles of the varieties.) The overall flavonoid profile of P. triangularis is fully in accord with the uifique status of the species. A detailed discussion of the chemistry of this system, which is beyond the scope of the present treatment, can be found in a paper by Wollenweber and Dietz (1980). An example of the complexity of flavonoid biosynthesis in this species can be found in a description of biflavonoids present in the farinose exudate (linuma et al., 1994). [Pg.109]


See other pages where Biosynthesis discussion is mentioned: [Pg.247]    [Pg.336]    [Pg.589]    [Pg.10]    [Pg.372]    [Pg.683]    [Pg.549]    [Pg.336]    [Pg.388]    [Pg.388]    [Pg.247]    [Pg.336]    [Pg.589]    [Pg.10]    [Pg.372]    [Pg.683]    [Pg.549]    [Pg.336]    [Pg.388]    [Pg.388]    [Pg.1077]    [Pg.252]    [Pg.4]    [Pg.21]    [Pg.320]    [Pg.279]    [Pg.393]    [Pg.1077]    [Pg.1089]    [Pg.413]    [Pg.80]    [Pg.364]    [Pg.368]    [Pg.435]    [Pg.521]    [Pg.194]    [Pg.494]    [Pg.230]    [Pg.76]    [Pg.13]    [Pg.280]    [Pg.243]    [Pg.538]    [Pg.618]    [Pg.269]   
See also in sourсe #XX -- [ Pg.34 , Pg.35 , Pg.36 , Pg.37 , Pg.38 , Pg.39 ]




SEARCH



© 2024 chempedia.info