Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Firefly, bioluminescence

Bioluminescence in vitro chemosensitivity assays are now used to assess the sensitivity of tumor cells (obtained by surgical or needle biopsy) to different dmgs and combinations of dmgs. Cells are grown in microwell plates in the presence of the dmgs at various concentrations. If the tumor cells are sensitive to the dmg then they do not grow, hence total extracted cellular ATP, measured using the bioluminescence firefly luciferase reaction, is low. This method has been used to optimize therapy for different soHd tumors and for leukemias (306). [Pg.276]

B, bioluminescent bacterial system on nylon L, bioluminescent firefly system on nylon M, bioluminescent firefly system on methacrylate beads r-LM, recombinant firefly luciferase on methacrylate beads r-LN, recombinant firefly luciferase on nylon. [Pg.268]

A rapid, nondestructive method based on determination of the spatial distribution of ATP, as a potential bioindicator of microbial presence and activity on monuments, artworks, and other samples related to the cultural heritage, was developed [57], After cell lysis, ATP was detected using the bioluminescent firefly luciferin-luciferase system and the method was tested on different kinds of surfaces and matrices. Figure 3 reports the localization of biodeteriogen agents on a marble specimen. Sample geometry is a critical point especially when a quantitative analysis has to be performed however, the developed method showed that with opti-... [Pg.484]

Later, fireflv oxyluciferin was successfully synthesi2ed (403. 408) and has been isolated and identified in firefly lanterns (luciola cruaciata) after the lanterns were treated with pyridine and acetic anhydride to prevent decomposition (409). In 1972, Suzuki and Goto firmly established that oxyluciferin is involved in the bioluminescence of firefly lanterns and in the chemiluminescence of firefly luciferin (403. 410).. A. mechanism involving a four-membered ring cyclic peroxide has been proposed for the reaction (406. 411). However, it was not confirmed by 0 -labelinE experiments (412). [Pg.421]

Bioluminescence functions in mating (fireflies, the Bahama fireworm), in the search for prey (angler fish, Photmus fireflies), camouflage (hatchet fish, squid), schooling (euphausiid shrimp), and to aid deep water fish (flashlight fish, Photoblepharon to see in the dark ocean depths. [Pg.271]

Firefly. Firefly luciferase (EC 1.13.12.7) is a homodimeric enzyme (62 kDa subunit) that has binding sites for firefly luciferin and Mg ATP . Amino acid sequence analysis has iadicated that beetle luciferases evolved from coen2yme A synthetase (206). Firefly bioluminescence is the most efficient bioluminescent reaction known, with Qc reported to be 88% (5), and at 562 nm (56). At low pH and ia the presence of certain metal ions (eg, Pb ", ... [Pg.272]

ImmunO lSS iy. Chemiluminescence compounds (eg, acridinium esters and sulfonamides, isoluminol), luciferases (eg, firefly, marine bacterial, Benilla and Varela luciferase), photoproteins (eg, aequorin, Benilld), and components of bioluminescence reactions have been tested as replacements for radioactive labels in both competitive and sandwich-type immunoassays. Acridinium ester labels are used extensively in routine clinical immunoassay analysis designed to detect a wide range of hormones, cancer markers, specific antibodies, specific proteins, and therapeutic dmgs. An acridinium ester label produces a flash of light when it reacts with an alkaline solution of hydrogen peroxide. The detection limit for the label is 0.5 amol. [Pg.275]

The fireflies, railroad worms, and click beetles use the same luciferin in their luminescence reactions. Recent studies on the railroad worms and the click beetles have greatly contributed to the biochemical understanding of the firefly bioluminescence (see Section 1.2). Concerning luminous Diptera, significant progress has been made only recently. [Pg.2]

The luciferin-luciferase reaction of fireflies was first demonstrated by Harvey (1917), although the light observed was weak and short-lasting. Thirty years after Harvey s discovery, McElroy (1947) made a crucial breakthrough in the study of firefly bioluminescence. He found that the light-emitting reaction requires ATP as a cofactor. The addition of ATP to the mixtures of luciferin and luciferase... [Pg.3]

The following schemes represent the overall reaction of firefly bioluminescence (McElroy and DeLuca, 1978), where E is luciferase LH2 is D-luciferin PP is pyrophosphate AMP is adenosine phosphate LH2-AMP is D-luciferyl adenylate (an anhydride formed between the carboxyl group of luciferin and the phosphate group of AMP) and L is oxyluciferin. [Pg.5]

Fig. 1.7 Spectral change of the in vitro firefly bioluminescence by pH, with Photinus pyralis luciferase in glycylglycine buffer. The normally yellow-green luminescence (Amax 560 nm) is changed into red (Xmax 615 nm) in acidic medium, accompanied by a reduction in the quantum yield. From McElroy and Seliger, 1961, with permission from Elsevier. Fig. 1.7 Spectral change of the in vitro firefly bioluminescence by pH, with Photinus pyralis luciferase in glycylglycine buffer. The normally yellow-green luminescence (Amax 560 nm) is changed into red (Xmax 615 nm) in acidic medium, accompanied by a reduction in the quantum yield. From McElroy and Seliger, 1961, with permission from Elsevier.
Fig. 1.8 Quantum yield of firefly bioluminescence as a function of pH. From McElroy and Seliger, 1961, with permission from Elsevier. Fig. 1.8 Quantum yield of firefly bioluminescence as a function of pH. From McElroy and Seliger, 1961, with permission from Elsevier.
The sharp flash in the firefly bioluminescence reaction (Fig. 1.6) is due to the formation of a strongly inhibitory byproduct in the reaction. The inhibitor formed is dehydroluciferyl adenylate, having the structure shown below at left. In the presence of coenzyme A (CoA), however, this inhibitory adenylate is converted into dehydroluciferyl-CoA, a compound only weakly inhibitory to luminescence. Thus, an addition of CoA in the reaction medium results in a long-lasting, high level of luminescence (Airth et al., 1958 McElroy and Seliger, 1966 Ford et al., 1995 Fontes et al., 1997, 1998). [Pg.15]

In the postulated bioluminescence mechanism, firefly luciferin is adenylated in the presence of luciferase, ATP and Mg2+. Luciferyl adenylate in the active site of luciferase is quickly oxygenated at its tertiary carbon (position 4), forming a hydroperoxide intermediate (A). [Pg.15]

Fig. 1.12 Mechanism of the bioluminescence reaction of firefly luciferin catalyzed by firefly luciferase. Luciferin is probably in the dianion form when bound to luciferase. Luciferase-bound luciferin is converted into an adenylate in the presence of ATP and Mg2+, splitting off pyrophosphate (PP). The adenylate is oxygenated in the presence of oxygen (air) forming a peroxide intermediate A, which forms a dioxetanone intermediate B by splitting off AMP. The decomposition of intermediate B produces the excited state of oxyluciferin monoanion (Cl) or dianion (C2). When the energy levels of the excited states fall to the ground states, Cl and C2 emit red light (Amax 615 nm) and yellow-green light (Amax 560 nm), respectively. Fig. 1.12 Mechanism of the bioluminescence reaction of firefly luciferin catalyzed by firefly luciferase. Luciferin is probably in the dianion form when bound to luciferase. Luciferase-bound luciferin is converted into an adenylate in the presence of ATP and Mg2+, splitting off pyrophosphate (PP). The adenylate is oxygenated in the presence of oxygen (air) forming a peroxide intermediate A, which forms a dioxetanone intermediate B by splitting off AMP. The decomposition of intermediate B produces the excited state of oxyluciferin monoanion (Cl) or dianion (C2). When the energy levels of the excited states fall to the ground states, Cl and C2 emit red light (Amax 615 nm) and yellow-green light (Amax 560 nm), respectively.
Bioluminescence of firefly luciferin can produce a wide range of colors when catalyzed by different luciferases obtained from various species of fireflies, with their emission maxima ranging from 535 nm (yellow-green) to 638 nm (red). Apparently, each spectrum is emitted from a single emitting species they are not the composites of the yellow-green peak and the red peak (Seliger and McElroy, 1964). [Pg.17]

This finding by Branchini et al. (2002) clearly indicates that 5,5-dimethyloxyluciferin is able to emit the two different colors. This conclusion, however, does not rule out the involvement of the enolized oxyluciferin in the bioluminescence reaction of firefly. [Pg.18]

Orlova et al. (2003) theoretically studied the mechanism of the firefly bioluminescence reaction on the basis of the hybrid density functional theory. According to their conclusion, changes in the color of light emission by rotating the two rings on the 2-2 axis is unlikely, whereas the participation of the enol-forms of oxyluciferin in bioluminescence is plausible but not essential to explain the multicolor emission. They predicted that the color of the bioluminescence depends on the polarization of the oxyluciferin molecule (at its OH and O-termini) in the microenvironment of the luciferase active site the... [Pg.18]

Fig. 1.13 A mechanism of the decomposition of luciferin-4-peroxide in the firefly bioluminescence reaction proposed by DeLuca and Dempsey (1970), which involves a multiple linear bond cleavage. Fig. 1.13 A mechanism of the decomposition of luciferin-4-peroxide in the firefly bioluminescence reaction proposed by DeLuca and Dempsey (1970), which involves a multiple linear bond cleavage.
However, the linear bond cleavage hypothesis of the firefly bioluminescence was made invalid in 1977. It was clearly shown by Shimomura et al. (1977) that one O atom of the CO2 produced is derived from molecular oxygen, not from the solvent water, using the same 180-labeling technique as used by DeLuca and Dempsey. The result was verified by Wannlund et al. (1978). Thus it was confirmed that the firefly bioluminescence reaction involves the dioxetanone pathway. Incidentally, there is currently no known bioluminescence system that involves a splitting of CO2 by the linear bond cleavage mechanism. [Pg.21]

The bioluminescence systems of Phengodidae (railroad worms) and Elateroidae (click beetles) are basically identical to that of Lampyridae (fireflies), requiring firefly luciferin, ATP, Mg2+ and a luciferase for light emission. However, there seem to be some differences. Viviani and Bechara (1995) reported that the spectra of the luminescence reactions measured with the luciferases of Brazilian fireflies (6 species) shift from the yellow-green range to the red range with lowering of the pH of the medium, like in the case of the Photinus pyralis luciferase (see Section 1.1.5), whereas the spectra... [Pg.23]

The order Diptera (flies) contains the glow-worms Arachnocampa and Orfelia. The bioluminescence systems of dipterans do not utilize firefly luciferin in their light-emitting reactions, differing from the bioluminescence systems of coleopterans. In dipterans, it is extremely intriguing that the bioluminescence system of Arachnocampa appears different from that of Orfelia-. the former luminescence is activated by ATP, whereas the latter luminescence is stimulated by DTT but not by ATP. [Pg.25]

One is the concerted decomposition of a dioxetanone structure that is proposed for the chemiluminescence and bioluminescence of both firefly luciferin (Hopkins et al., 1967 McCapra et al., 1968 Shimomura et al., 1977) and Cypridina luciferin (McCapra and Chang, 1967 Shimomura and Johnson, 1971). The other is the linear decomposition mechanism that has been proposed for the bioluminescence reaction of fireflies by DeLuca and Dempsey (1970), but not substantiated. In the case of the Oplopborus bioluminescence, investigation of the reaction pathway by 180-labeling experiments has shown that one O atom of the product CO2 derives from molecular oxygen, indicating that the dioxetanone pathway takes place in this bioluminescence system as well (Shimomura et al., 1978). It appears that the involvement of a dioxetane intermediate is quite widespread in bioluminescence. [Pg.87]

Based on the available knowledge on the chemiluminescence and bioluminescence reactions of various luciferins (firefly, Cypridina, Oplophorus and Renilla), the luminescence reaction of coelenterazine is considered to proceed as shown in Fig. 5.4 (p. 171). The reaction is initiated by the binding of O2 at the 2-position of the coelenterazine molecule, giving a peroxide. The peroxide then forms a four-membered ring dioxetanone, as in the case of the luminescence... [Pg.168]

The enol-sulfate form (I), which is the precursor of the luciferin in the bioluminescence system of the sea pansy Renilla (Hori et al., 1972), can be readily converted into coelenterazine by acid hydrolysis. The enol-sulfate (I), dehydrocoeienterazine (D) and the coelenterazine bound by the coelenterazine-binding proteins are important storage forms for preserving unstable coelenterazine in the bodies of luminous organisms. The disulfate form of coelenterazine (not shown in Fig. 5.5) is the luciferin in the firefly squid Watasenia (Section 6.3.1). An enol-ether form of coelenterazine bound with glucopyra-nosiduronic acid has been found in the liver of the myctophid fish Diapbus elucens (Inoue et al., 1987). [Pg.176]

Fig. 6.3.5 A reaction scheme proposed by Tsuji (2002) for the Watasenia bioluminescence. The proposed mechanism involves the adenylation of luciferase-bound luciferin by ATP, like in the bioluminescence of fireflies. However, the AMP group is split off from luciferin before the oxygenation of luciferin, differing from the mechanism of the firefly bioluminescence. Thus the role of ATP in the Watasenia bioluminescence reaction remains unclear. Reproduced with permission from Elsevier. Fig. 6.3.5 A reaction scheme proposed by Tsuji (2002) for the Watasenia bioluminescence. The proposed mechanism involves the adenylation of luciferase-bound luciferin by ATP, like in the bioluminescence of fireflies. However, the AMP group is split off from luciferin before the oxygenation of luciferin, differing from the mechanism of the firefly bioluminescence. Thus the role of ATP in the Watasenia bioluminescence reaction remains unclear. Reproduced with permission from Elsevier.

See other pages where Firefly, bioluminescence is mentioned: [Pg.268]    [Pg.268]    [Pg.243]    [Pg.375]    [Pg.403]    [Pg.271]    [Pg.271]    [Pg.101]    [Pg.1]    [Pg.4]    [Pg.7]    [Pg.10]    [Pg.12]    [Pg.15]    [Pg.15]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.41]    [Pg.47]    [Pg.204]    [Pg.370]   
See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.1182 , Pg.1213 , Pg.1255 , Pg.1256 ]




SEARCH



1.2- Dioxetanes firefly bioluminescence

Bioluminescence

Bioluminescence firefly luciferase gene

Bioluminescence firefly luciferins, mechanism

Bioluminescence, of firefly lanterns

Firefly bioluminescence system

Firefly bioluminescent assay

Firefly lanterns, bioluminescence

© 2024 chempedia.info