Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binary minerals

The (compositionally) simplest mineral class comprises the native elements, that is, those elements, either metals or nonmetals that occur naturally in the native state, uncombined with others. Native gold, silver, and copper, for example, are metals that naturally occur in a ductile and malleable condition, while carbon - in the form of either graphite or diamond -and sulfur are examples of nonmetallic native elements. Next in compositional complexity are the binary minerals composed of two elements a metal or nonmetallic element combined with oxygen in the oxides, with a halogen - either fluorine, chlorine bromine, or iodine - in the halides, or sulfur, in the sulfides. The oxide minerals, for example, are solids that occur either in a somewhat hard, dense, and compact form in mineral ores and in rocks, or as relatively soft, unconsolidated sediments that melt at moderate to... [Pg.36]

Knowing the bond resistance coefficient, we can calculate from (3.5) the hardness of simple binary minerals ... [Pg.188]

All three elements combine readily with most metals and many non-metals to form binary chalcogenides. Indeed, selenides and tellurides are the most common mineral forms of these elements (p. 748). Nonstoichiometry abounds, particularly for compounds with the transition elements (where electronegativity differences are minimal and variable valency is favoured), and many of the chalcogenides can be considered... [Pg.765]

By contrast, the acidity of the metal salts used in these cements has a less clear origin. All of the salts dissolve quite readily in water and give rise to free ions, of which the metal ions are acids in the Lewis sense. These ions form donor-acceptor complexes with a variety of other molecules, including water, so that the species which exists in aqueous solution is a well-characterized hexaquo ion, either Mg(OH2)g or Zn(OH2)g. However, zinc chloride at least has a ternary rather than binary relationship with water and quite readily forms mixtures of Zn0-HCl-H20 (Sorrell, 1977). Hence it is quite probable that in aqueous solution the metal salts involved in forming oxysalt cements dissolve to generate a certain amount of mineral acid, which means that these aqueous solutions function as acids in the Bronsted-Lowry sense. [Pg.284]

Batch adsorption experiments by Yee and Fein (2002) using aqueous Cd, B. subtilis, and quartz as a function of pH showed that the thermodynamic stability constants, determined from binary systems, could successfully describe the distribution of Cd between the aqueous phase and the bacterial and mineral surfaces. The constants could also be used to estimate the distribution of mass in systems, and construct a surface complexation model. [Pg.84]

Models can be constructed in this manner (e.g., Bourcier, 1985), but most modelers choose for practical reasons to consider only minerals of fixed composition. The data needed to calculate activities in even binary solid solutions are, for the... [Pg.34]

Third, for minerals with binary or higher order reactions, there is no assurance that the reactants are available in stoichiometric proportions. We could prepare solutions equally supersaturated with respect to gypsum by using differing Ca++ to SO4 ratios. A solution containing these components in equal amounts would precipitate the most gypsum. Solutions rich in Ca++ but depleted in SO4 , or rich in SO4 but depleted in Ca++, would produce lesser amounts of gypsum. [Pg.93]

The discussion above has been directed principally to thermally induced spin transitions, but other physical perturbations can either initiate or modify a spin transition. The effect of a change in the external pressure has been widely studied and is treated in detail in Chap. 22. The normal effect of an increase in pressure is to stabilise the low spin state, i.e. to increase the transition temperature. This can be understood in terms of the volume reduction which accompanies the high spin—dow spin change, arising primarily from the shorter metal-donor atom distances in the low spin form. An increase in pressure effectively increases the separation between the zero point energies of the low spin and high spin states by the work term PAV. The application of pressure can in fact induce a transition in a HS system for which a thermal transition does not occur. This applies in complex systems, e.g. in [Fe (phen)2Cl2] [158] and also in the simple binary compounds iron(II) oxide [159] and iron(II) sulfide [160]. Transitions such as those in these simple binary systems can be expected in minerals of iron and other first transition series metals in the deep mantle and core of the earth. [Pg.44]

Selenides, tellurides andpolonides. Se, Te and Po react easily with most metals and non-metals to form binary compounds (selenides and tellurides are common mineral forms of these elements). Non-stoichiometry is frequently observed in the compounds with the transition elements many of these compounds may be described as metallic alloys. The compounds of the metals of the first two groups may be considered the salts of the acids H2Se, H2Te, etc. The alkali metal selenides... [Pg.518]

The study of inverse adhesive emulsions has revealed the same features as direct emulsions [112,113]. Here again, it was shown that adhesion is favored when the surfactant becomes less soluble in the continuous phase [113]. This can be tested experimentally by using binary mixtures of oils, one in which the surfactant is soluble and another one in which the surfactant is insoluble. For example, water droplets can be stabilized in mineral oil by sorbitan monooleate (Span 80). This surfactant is soluble in dodecane whereas it is not in silicon oil. The affinity of the surfactant for the organic solvent can be tuned by mixing dodecane and silicon oil. As shown in Fig. 2.38, the energy of adhesion between water droplets strongly varies as the ratio of the mixture is changed. A sharp rise is noted as the surfactant... [Pg.95]

Chakraborty S. and Ganguly J. (1992). Cation diffusion in aluminosilicate garnets Experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib. Mineral Petrol, 111 74-86. [Pg.824]

Fei Y, Saxena S. K., and Eriksson G. (1986). Some binary and ternary silicate solution models. Contrib. Mineral Petrol, 94 221-229. [Pg.828]

Koziol A. M. (1990). Activity-composition relationship of binary Ca-Fe and Ca-Mn garnets determined by reversed, displaced equilibrium experiments. Amer. Mineral, 75 319-327. [Pg.840]


See other pages where Binary minerals is mentioned: [Pg.383]    [Pg.383]    [Pg.779]    [Pg.390]    [Pg.383]    [Pg.383]    [Pg.779]    [Pg.390]    [Pg.406]    [Pg.524]    [Pg.127]    [Pg.213]    [Pg.581]    [Pg.149]    [Pg.373]    [Pg.163]    [Pg.40]    [Pg.41]    [Pg.42]    [Pg.86]    [Pg.351]    [Pg.388]    [Pg.64]    [Pg.229]    [Pg.314]    [Pg.98]    [Pg.195]    [Pg.8]    [Pg.558]    [Pg.29]    [Pg.357]    [Pg.402]    [Pg.157]    [Pg.401]    [Pg.449]    [Pg.762]    [Pg.147]    [Pg.561]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.11 ]




SEARCH



© 2024 chempedia.info