Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binary Distillation in Tray Columns

The main emphasis will be upon stagewise, continuous feed distillation, schematically shown in figure 6.1. The column may contain trays or packing (as described later) to promote good vapour-liquid contact. The quantitative analysis is confined to two-component (binary) systems in trayed columns. [Pg.113]

Note that these values for theoretical trays do contain corrections in overall efficiency, and hence are not the actual trays for the binary distillation column. Efficiencies generally run 50-60% for systems of this type which will yield a column of actual trays almost twice the theoretical at the operating reflux. [Pg.40]

The digital simulation of a distillation column is fairly straightforward. The main complication is the large number of ODEs and algebraic equations that must be solved. We will illustrate the procedure first with the simplified binary distillation column for which we developed the equations in Chap. 3 (Sec. 3.11). Equimolal overflow, constant relative volatility, and theoretical plates have been assumed. There are two ODEs per tray (a total continuity equation and a light component continuity equation) and two algebraic equations per tray (a vapor-liquid phase equilibrium relationship and a liquid-hydraulic relationship). [Pg.129]

Example The location of the best temperature-control tray in a distillation column is a popular subject in the process-control literature. Ideally, the best location for controlling distillate composition xa with reflux flow by using a tray temperature would be at the top of the column for a binary system. See Fig. 8.9o. This is desirable dynamically because it keeps the measurement lags as small as possible. It is also desirable from a steadystate standpoint because it keeps the distillate composition constant at steadystate in a constant pressure, binary system. Holding a temperature on a tray farther down in the column does not guarantee that x will be constant, particularly when feed composition changes occur. [Pg.269]

Operation of a batch distillation is an unsteady state process whose mathematical formulation is in terms of differential equations since the compositions in the still and of the holdups on individual trays change with time. This problem and methods of solution are treated at length in the literature, for instance, by Holland and Liapis (Computer Methods for Solving Dynamic Separation Problems, 1983, pp. 177-213). In the present section, a simplified analysis will be made of batch distillation of binary mixtures in columns with negligible holdup on the trays. Two principal modes of operating batch distillation columns may be employed ... [Pg.390]

This illustrative example is taken from the recent work on interaction of design and control by Luyben and Floudas (1994a) and considers the design of a binary distillation column which separates a saturated liquid feed mixture into distillate and bottoms products of specified purity. The objectives are the determination of the number of trays, reflux ratio, flow rates, and compositions in the distillation column that minimize the total annual cost. Figure (1.1) shows a superstructure for the binary distillation column. [Pg.6]

Many industrial columns use temperatures for composition control because direct composition analyzers can be expensive and unreliable. Although temperature is uniquely related to composition only in a binary system (at known pressure), it is still often possible to use the temperatures on various trays up and down the column to maintain approximate composition control, even in multicomponent systems. Probably 75 percent of all distillation columns use temperature control of some tray to hold the composition profile in the column. This prevents the light-key (LK) impurities from dropping out the bottom and the heavy-key (HK) impurities from going overhead. [Pg.205]

The distillation column used in this study is designed to separate a binary mixture of methanol and water, which enters as a feed stream with flow rate F oi and composition Xp between the rectifying and the stripping section, obtaining both a distillate product stream D oi with composition Ad and a bottom product stream 5vo/ with composition Ab. The column consists of 40 bubble cap trays. The overhead vapor is totally condensed in a water cooled condenser (tray 41) which is open at atmospheric pressure. The process inputs that are available for control purposes are the heat input to the boiler Q and the reflux flow rate L oi. Liquid heights in the column bottom and the receiver drum (tray 1) dynamics are not considered for control since flow dynamics are significantly faster than composition dynamics and pressure control is not necessary since the condenser is opened to atmospheric pressure. [Pg.466]


See other pages where Binary Distillation in Tray Columns is mentioned: [Pg.307]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.327]    [Pg.329]    [Pg.307]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.327]    [Pg.329]    [Pg.1342]    [Pg.219]    [Pg.145]    [Pg.1165]    [Pg.529]    [Pg.393]    [Pg.165]    [Pg.399]    [Pg.1]    [Pg.502]    [Pg.135]    [Pg.136]    [Pg.165]    [Pg.208]    [Pg.93]    [Pg.1142]    [Pg.7]    [Pg.1527]    [Pg.237]   


SEARCH



Binary column

Binary distillation column

Distillation binary

Distillation trayed columns

Distillation trays

Distilling columns

In distillation

Tray columns

Trays in distillation columns

© 2024 chempedia.info