Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binary compounds oxidation state

Binary Compounds. The mthenium fluorides are RuF [51621 -05-7] RuF [71500-16-8] tetrameric (RuF ) [14521 -18-7] (15), and RuF [13693-087-8]. The chlorides of mthenium are RUCI2 [13465-51-5] an insoluble RuCl [10049-08-8] which exists in an a- and p-form, mthenium trichloride ttihydrate [13815-94-6], RuCl3-3H2 0, and RuCl [13465-52-6]. Commercial RuCl3-3H2 0 has a variable composition, consisting of a mixture of chloro, 0x0, hydroxo, and often nitrosyl complexes. The overall mthenium oxidation state is closer to +4 than +3. It is a water-soluble source of mthenium, and is used widely as a starting material. Ruthenium forms bromides, RuBr2 [59201-36-4] and RuBr [14014-88-1], and an iodide, Rul [13896-65-6]. [Pg.177]

It will be convenient to describe first the binary. sulfur nitrides SjN,. and then the related cationic and anionic species, S,Nv. The sulfur imides and other cyclic S-N compounds will then be discus.sed and this will be followed by sections on S-N-halogen and S-N-O compounds. Several compounds which feature i.solated S<—N, S-N, S = N and S=N bonds have already been mentioned in the. section on SF4 e.g. F4S NC,H, F5S-NF2. F2S = NCF3, and FiS=N (p. 687). Flowever. many SN compounds do not lend themselves to simple bond diagrams, - and formal oxidation states are often unhelpful or even misleading. [Pg.722]

Perhaps because of inadequate or non-existent back-bonding (p. 923), the only neutral, binary carbonyl so far reported is Ti(CO)g which has been produced by condensation of titanium metal vapour with CO in a matrix of inert gases at 10-15 K, and identified spectroscopically. By contrast, if MCI4 (M = Ti, Zr) in dimethoxy-ethane is reduced with potassium naphthalenide in the presence of a crown ether (to complex the K+) under an atmosphere of CO, [M(CO)g] salts are produced. These not only involve the metals in the exceptionally low formal oxidation state of —2 but are thermally stable up to 200 and 130°C respectively. However, the majority of their carbonyl compounds are stabilized by n-bonded ligands, usually cyclopentadienyl, as in [M(/j5-C5H5)2(CO)2] (Fig. 21.8). [Pg.973]

Many of these binary compounds have hydrogen in its +1 oxidation state, and so the name hydride is not really appropriate. However, it is the conventional term. [Pg.704]

Compounds containing carbon in a negative oxidation state are properly called carbides, and many such compounds are known. In a manner analogous to the behavior of hydrogen and boron, carbon forms three types of binary compounds, which are usually called ionic, covalent, and interstitial... [Pg.449]

A normal oxide is a binary (two element) compound containing oxygen in the -2 oxidation state. BaO is an example of an ionic oxide and S02 is an example of a molecular (covalent) oxide. [Pg.85]

A peroxide can be a binary ionic compound containing the 02 2 ion, such as Na202, or a covalent compound, such as H202, with oxygen in the -1 oxidation state. [Pg.85]

The discussion above has been directed principally to thermally induced spin transitions, but other physical perturbations can either initiate or modify a spin transition. The effect of a change in the external pressure has been widely studied and is treated in detail in Chap. 22. The normal effect of an increase in pressure is to stabilise the low spin state, i.e. to increase the transition temperature. This can be understood in terms of the volume reduction which accompanies the high spin—dow spin change, arising primarily from the shorter metal-donor atom distances in the low spin form. An increase in pressure effectively increases the separation between the zero point energies of the low spin and high spin states by the work term PAV. The application of pressure can in fact induce a transition in a HS system for which a thermal transition does not occur. This applies in complex systems, e.g. in [Fe (phen)2Cl2] [158] and also in the simple binary compounds iron(II) oxide [159] and iron(II) sulfide [160]. Transitions such as those in these simple binary systems can be expected in minerals of iron and other first transition series metals in the deep mantle and core of the earth. [Pg.44]

Hydrides of variable composition are not only formed with pure metals as solvents. A large number of the binary metal hydrides are non-stoichiometric compounds. Non-stoichiometric compounds are in general common for d,f and some p block metals in combination with soft anions such as sulfur, selenium and hydrogen, and also for somewhat harder anions like oxygen. Hard anions such as the halides, sulfates and nitrides form few non-stoichiometric compounds. Two factors are important the crystal structures must allow changes in composition, and the transition metal must have accessible oxidation states. These factors are partly related. FeO,... [Pg.221]

Their unique characteristics are a result of their outer shells having seven electrons, and thus requiring only one electron to become complete. This -1 oxidation state makes them extremely reactive with both metals and some nonmetal elements that form negative ions, and they may form either ionic or covalent bonds. They can also form compounds with each other these binary compounds of the halogens are called halides. ... [Pg.245]

Chemical properties of gallium fall between those of aluminum and indium. It forms mostly the binary and oxo compounds in -i-3 oxidation state. It forms a stable oxide, Ga203 and a relatively volatile suboxide, Ga20. [Pg.309]

Iron reacts with nonmetals forming their binary compounds. It combines readily with halogens. Reaction is vigorous with chlorine at moderate temperature. With oxygen, it readily forms iron oxides at moderate temperatures. In a finely divided state, the metal is pyrophoric. Iron combines partially with nitrogen only at elevated temperatures. It reacts with carbon, sulfur, phosphorus, arsenic, and silicon at elevated temperatures in the absence of air, forming their binary compounds. [Pg.414]

The chemical properties of selenium fall between sulfur and tellurium. Thus, selenium reacts with oxygen similarly to sulfur, forming two oxides, selenium dioxide, Se02 and trioxide, SeOs. The metal combines with halogens forming their halides. With nonmetals, selenium forms binary compounds exhibiting oxidation states +4 and -i-6. [Pg.813]

Most chemical properties of technetium are similar to those of rhenium. The metal exhibits several oxidation states, the most stable being the hep-tavalent, Tc +. The metal forms two oxides the black dioxide Tc02 and the heptoxide TC2O7. At ambient temperature in the presence of moisture, a thin layer of dioxide, Tc02, covers the metal surface. The metal burns in fluorine to form two fluorides, the penta- and hexafluorides, TcFs and TcFe. Binary compounds also are obtained with other nonmetaUic elements. It combines with sulfur and carbon at high temperatures forming technetium disulfide and carbide, TcS2 and TcC, respectively. [Pg.914]

In actinide binary compounds an equation of state can also be developed on the same lines. The difference in electronegativity of the actinide and the non-actinide element plays an important role, determining the degree of mixing between the actinide orbitals (5 f and 6 d) and the orbitals of the ligand. A mixture of metallic, ionic and covalent bond is then encountered. In the chapter, two classes of actinide compounds are reviewed NaCl-structure pnictides or chalcogenides, and oxides. [Pg.75]


See other pages where Binary compounds oxidation state is mentioned: [Pg.187]    [Pg.204]    [Pg.469]    [Pg.115]    [Pg.115]    [Pg.176]    [Pg.287]    [Pg.27]    [Pg.767]    [Pg.819]    [Pg.1236]    [Pg.180]    [Pg.330]    [Pg.38]    [Pg.167]    [Pg.255]    [Pg.739]    [Pg.10]    [Pg.212]    [Pg.222]    [Pg.76]    [Pg.52]    [Pg.225]    [Pg.243]    [Pg.779]    [Pg.930]    [Pg.345]    [Pg.48]    [Pg.178]    [Pg.352]    [Pg.1113]    [Pg.241]    [Pg.1101]    [Pg.176]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



Binary oxides

Compounds oxidation state

State) compounds

© 2024 chempedia.info