Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts acylation benzene

Electrophilic substitution at carbon, in simple pyridines at least, is very difficult in contrast to the reactions of benzene - Friedel-Crafts acylations, for example, do not occur at all with pyridines. This unreactivity can be traced to two factors ... [Pg.64]

Representative Electrophilic Aromatic Substitution Reactions of Benzene 457 Mechanistic Principles of Electrophilic Aromatic Substitution 458 Nitration of Benzene 459 Sulfonation of Benzene 461 Halogenation of Benzene 462 Biosynthetic Halogenation 464 Friedel-Crafts Alkylation of Benzene Friedel-Crafts Acylation of Benzene Synthesis of Alkylbenzenes by Acylation-Reduction 469 Rate and Regioselectivity in Electrophilic Aromatic Substitution 470 Rate and Regioselectivity in the Nitration ofToluene 472... [Pg.456]

The nitration, sulphonation and Friedel-Crafts acylation of aromatic compounds (e.g. benzene) are typical examples of electrophilic aromatic substitution. [Pg.155]

Friedel-Crafts acylation An analogous reaction occurs when acyl halides react with benzene in the presence of alumi num chloride The products are acylben zenes... [Pg.475]

Because the position of electrophilic attack on an aromatic nng is controlled by the direct ing effects of substituents already present the preparation of disubstituted aromatic com pounds requires that careful thought be given to the order of introduction of the two groups Compare the independent preparations of m bromoacetophenone and p bromoace tophenone from benzene Both syntheses require a Friedel-Crafts acylation step and a bromination step but the major product is determined by the order m which the two steps are carried out When the meta directing acetyl group is introduced first the final product IS m bromoacetophenone... [Pg.504]

Friedel-Crafts acylation of benzene with benzoyl chloride (CgH5CCl) (j) Nitration of the product from part (1)... [Pg.512]

Friedel-Crafts Acylation. The Friedel-Crafts acylation procedure is the most important method for preparing aromatic ketones and thein derivatives. Acetyl chloride (acetic anhydride) reacts with benzene ia the presence of aluminum chloride or acid catalysts to produce acetophenone [98-86-2], CgHgO (1-phenylethanone). Benzene can also be condensed with dicarboxyHc acid anhydrides to yield benzoyl derivatives of carboxyHc acids. These benzoyl derivatives are often used for constmcting polycycHc molecules (Haworth reaction). For example, benzene reacts with succinic anhydride ia the presence of aluminum chloride to produce P-benzoylpropionic acid [2051-95-8] which is converted iato a-tetralone [529-34-0] (30). [Pg.40]

Anthraquinone dyes are derived from several key compounds called dye intermediates, and the methods for preparing these key intermediates can be divided into two types (/) introduction of substituent(s) onto the anthraquinone nucleus, and (2) synthesis of an anthraquinone nucleus having the desired substituents, starting from benzene or naphthalene derivatives (nucleus synthesis). The principal reactions ate nitration and sulfonation, which are very important ia preparing a-substituted anthraquiaones by electrophilic substitution. Nucleus synthesis is important for the production of P-substituted anthraquiaones such as 2-methylanthraquiQone and 2-chloroanthraquiaone. Friedel-Crafts acylation usiag aluminum chloride is appHed for this purpose. Synthesis of quinizatia (1,4-dihydroxyanthraquiQone) is also important. [Pg.309]

Because acylation of an aromatic ring can be accomplished without reanangement, it is frequently used as the first step in a procedure for the alkylation of aromatic compounds by acylation-reduction. As we saw in Section 12.6, Friedel-Crafts alkylation of benzene with primary alkyl halides nonrrally yields products having rearranged alkyl groups as substituents. When a compound of the type ArCFl2R is desued, a two-step sequence is used in which the first step is a Friedel-Crafts acylation. [Pg.486]

Partial rate factors may be used to estimate product distributions in disubstituted benzene derivatives. The reactivity of a particular position in o-bromotoluene, for example, is given by the product of the partial rate factors for the corresponding position in toluene and bromobenzene. On the basis of the partial rate factor data given here for Friedel-Crafts acylation, predict the major product of the reaction of o-bromotoluene with acetyl chloride and aluminum chloride. [Pg.517]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

The Friedel-Crafts acylation reaction has also been performed in iron(III) chloride ionic liquids, by Seddon and co-workers [96]. An example is the acetylation of benzene (Scheme 5.1-66). Ionic liquids of the type [EMIM]Cl/FeCl3 (0.50 < X(FeCl3) < 0.62) are good acylation catalysts, with the added benefit that the ketone product of the reaction can be separated from the ionic liquid by solvent extraction, provided that X(FeCl3) is in the range 0.51-0.55. [Pg.207]

What is an immediate precursor of propiophenone " Benzene, which could undergo Friedel-Crafts acylation with propanoyl chloride and AlClv... [Pg.584]

The chemistry of pyrrole is similar to that of activated benzene rings. In general, however, the heterocycles are more reactive toward electrophiles than benzene rings are, and low temperatures are often necessary to control the reactions. Halogenation, nitration, sulfonation, and Friedel-Crafts acylation can all be accomplished. For example ... [Pg.947]

As in the alkylation reaction, the reactive intermediate in Friedel-Crafts acylation can be a dissociated acylium ion or a complex of the acid chloride and Lewis acyl.49 Recent mechanistic studies have indicated that with benzene and slightly deactivated derivatives, it is the protonated acylium ion that is the kinetically dominant electrophile.50... [Pg.1019]

Bismuth tra-tri lluoromcthancsulfonate, Bi(OTf)3, and BiCh were found to be effective catalysts for the Friedel-Crafts acylation of both activated and deactivated benzene derivatives such as fluorobenzene.19 Ga(III) triflate is also effective for Friedel-Crafts alkylation and acylation in alcohols and can tolerate water.20 This catalyst is water-stable... [Pg.204]

An alternative route to anthraquinone, which involves Friedel-Crafts acylation, is illustrated in Scheme 4.3. This route uses benzene and phthalic anhydride as starting materials. In the presence of aluminium(m) chloride, a Lewis acid catalyst, these compounds react to form 2-benzoyl-benzene-1-carboxylic acid, 74. The intermediate 74 is then heated with concentrated sulfuric acid under which conditions cyclisation to anthraquinone 52 takes place. Both stages of this reaction sequence involve Friedel-Crafts acylation reactions. In the first stage the reaction is inter-molecular, while the second step in which cyclisation takes place, involves an intramolecular reaction. In contrast to the oxidation route, the Friedel-Crafts route offers considerable versatility. A range of substituted... [Pg.84]

Compounds 1 and 2 were identified by FTIR and 13C-NMR. The 13C proton decoupled spectra for 1 and 2 are dominated by signals ranging from 62 to 195 ppm. The 13C chemical shift assignments were made based on comparisons with 4,4 -(hexafluoroisopropylidene)diphenol and from calculations based on substituted benzenes and naphthalenes.15 The 13C-NMR spectrum clearly showed that the Friedel-Crafts acylation of 1 by 4-fluorobenzoyl chloride yielded the 1,4-addition product exclusively. The 13C chemical shifts for 2 are listed in Table 8.1. The key structural features in the FTIR spectrum of2 include the following absorptions aromatic C-H, 3074 cnr1, ketone C=0, 1658 cm-1, aromatic ether Ar—0—Ar, 1245 cm-1, and C—F, 1175 cm-1. [Pg.116]

Anthraquinone itself is traditionally available from the anthracene of coal tar by oxidation, often with chromic acid or nitric acid a more modern alternative method is that of air oxidation using vanadium(V) oxide as catalyst. Anthraquinone is also produced in the reaction of benzene with benzene-1,2-dicarboxylic anhydride (6.4 phthalic anhydride) using a Lewis acid catalyst, typically aluminium chloride. This Friedel-Crafts acylation gives o-benzoylbenzoic acid (6.5) which undergoes cyclodehydration when heated in concentrated sulphuric acid (Scheme 6.2). Phthalic anhydride is readily available from naphthalene or from 1,2-dimethylbenzene (o-xylene) by catalytic air oxidation. [Pg.280]

When benzene or substituted benzene is treated with aeid ehloride in the presenee of anhydrous aluminium ehloride, it affords the eorresponding ketone. This reaetion is known as Friedel-Crafts acylation reaction. [Pg.87]


See other pages where Friedel-Crafts acylation benzene is mentioned: [Pg.530]    [Pg.530]    [Pg.725]    [Pg.484]    [Pg.486]    [Pg.1221]    [Pg.557]    [Pg.536]    [Pg.585]    [Pg.534]    [Pg.484]    [Pg.485]    [Pg.486]    [Pg.512]    [Pg.1221]    [Pg.72]    [Pg.944]    [Pg.713]    [Pg.725]    [Pg.53]    [Pg.125]    [Pg.179]    [Pg.223]   
See also in sourсe #XX -- [ Pg.475 , Pg.484 , Pg.485 , Pg.486 , Pg.487 , Pg.504 , Pg.505 ]

See also in sourсe #XX -- [ Pg.475 , Pg.484 , Pg.485 , Pg.486 , Pg.487 , Pg.504 , Pg.505 ]

See also in sourсe #XX -- [ Pg.642 ]

See also in sourсe #XX -- [ Pg.322 , Pg.348 , Pg.986 , Pg.987 ]

See also in sourсe #XX -- [ Pg.445 , Pg.453 , Pg.457 , Pg.473 , Pg.474 ]

See also in sourсe #XX -- [ Pg.322 , Pg.348 , Pg.986 , Pg.987 ]

See also in sourсe #XX -- [ Pg.480 , Pg.490 , Pg.491 , Pg.492 , Pg.493 , Pg.510 , Pg.511 ]

See also in sourсe #XX -- [ Pg.457 , Pg.467 , Pg.468 , Pg.469 , Pg.486 , Pg.487 ]

See also in sourсe #XX -- [ Pg.643 , Pg.647 , Pg.648 , Pg.649 , Pg.650 , Pg.651 , Pg.652 , Pg.672 ]




SEARCH



Benzene acylation

Benzene derivatives Friedel-Crafts acylation

Benzene, acylation Friedel-Crafts alkylation

Benzene, acylation Friedel-Crafts reactions

Friedel Crafts acylation of benzene

Friedel acylation

The Friedel-Crafts Acylation of Benzene

© 2024 chempedia.info