Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene derivatives oxidation

Crum Brown s rule A guide to substitution in benzene derivatives. This rule states that a substance C Hj A yields the meia disubstituied product if the compound HA can be oxidized directly to HOA otherwise a mixture of the o-and p-compounds will be obtained. Not universally applicable.. Sec Hammick and Illingworth s rules. [Pg.116]

Reaction that can be carried out by the oxidative coupling of radicals may also be initiated by irradiation with UV light. This procedure is especially useful if the educt contains oleflnic double bonds since they are vulnerable to the oxidants used in the usual phenol coupling reactions. Photochemically excited benzene derivatives may even attack ester carbon atoms which is generally not observed with phenol radicals (I. Ninoraiya, 1973 N.C. Yang, 1966). [Pg.295]

Benzoic acid and naphthoic acid are formed by the oxidative carbonylation by use of Pd(OAc)2 in AcOH. t-Bu02H and allyl chloride are used as reoxidants. Addition of phenanthroline gives a favorable effect[360], Furan and thiophene are also carbonylated selectively at the 2-position[361,362]. fndole-3-carboxylic acid is prepared by the carboxylation of 1-acetylindole using Pd(OAc)2 and peroxodisulfate (Na2S208)[362aj. Benzoic acid derivatives are obtained by the reaction of benzene derivatives with sodium palladium mal-onate in refluxing AcOH[363]. [Pg.78]

Attempts to broaden the range of materials available as dye precursors have been made (34,35). Oxidative dyes based on pyridine derivatives produce less sensitization than those based on benzene derivatives (36) however, they lack tinctorial power, lightfastness, and availabihty. Derivatives of tetra am in opyrim i din e are claimed to act as primary intermediates to give intense shades with good fastness and excellent toxicological properties (37). [Pg.457]

Neither the mechanism by which benzene damages bone marrow nor its role in the leukemia process are well understood. It is generally beheved that the toxic factor(s) is a metaboHte of benzene (107). Benzene is oxidized in the fiver to phenol [108-95-2] as the primary metabolite with hydroquinone [123-31-9] catechol [120-80-9] muconic acid [505-70-4] and 1,2,4-trihydroxybenzene [533-73-3] as significant secondary metabolites (108). Although the identity of the actual toxic metabolite or combination of metabolites responsible for the hematological abnormalities is not known, evidence suggests that benzene oxide, hydroquinone, benzoquinone, or muconic acid derivatives are possibly the ultimate carcinogenic species (96,103,107—112). [Pg.47]

Recently, Kochetkov and Khomutova have reported on the mercuration of isoxazoles with mercuric acetate. The reaction occurs quite smoothly, more readily than for benzene derivatives and results in a 90-100% yield of 4-acetoxymercury derivatives (74) whose structure was proved by converting them to known 4-bromoisoxazoles (75). Under these reaction conditions isoxazole itself is oxidized by mercuric acetate, mercurous salts being thereby produced. [Pg.388]

When distilled with phosphorus pentoxide, camphor yields cymene, and with iodine, carvacrol. Both of these bodies are para-derivatives of benzene. On oxidation with nitric acid camphor yields many acids, of which the chief are camphoric acid, CjgHjgO, camphanic acid, CjoHj O, and camphoronic acid, CgHj Og. The constitution of these acids has an important bearing on that of camphor. Many formulae have been suggested for camphor during the past few years, but that of Bredt is now universally accepted, and has received complete confirmation by Komppa s synthesis of camphoric acid. This synthesis confirms the formula for camphoric acid as—... [Pg.242]

Katsuya et al. [5 published the oxidative coupling (agent copper(II) chloride/ aluminum chloride) of electron-rich benzene derivatives such as 2,5-dimethoxy-benzene to poly(2,5-dimethoxy-1,4-phenylene) (2). The resulting polymer is only soluble in concentrated sulfuric acid, and is fusible at 320r C. Ueda et al. 16] described the coupling of the same monomer with iron(III) chloride/aluminum chloride. The polymers obtained by the authors were not thoroughly para-linked. [Pg.32]

Numerous reactions have been described in which the oxygen of the oxepin system is removed to give benzene derivatives. The formation of the aromatic products can be rationalized by an arene oxide as intermediate. A suitable reagent for the elimination of an oxygen atom from this heterocycle is triphenylphosphane, e.g. formation of l,24 2a,12 and 2b.1,9... [Pg.42]

Treatment of ethyl 2,7-di-/ert-butylthiepin-4-carboxylate (24) with 3-chloroperoxybenzoic acid at — 78 °C results in the benzene derivative 25 only, and no sulfur-oxidized products 80 however, the stable 2,7-di-ter/-butylthiepin (26) can be oxidized with 0-benzyl 00-hydrogen monoper-oxycarbonate at — 78 °C to give the corresponding S-oxide 27, which was monitored by HNMR spectroscopy at — 40°C. At —15 C, sulfoxide 27 was converted, via extrusion of sulfur monoxide, with a half-life of 5.5 hours to the benzene derivative 28.87 The oxidation reaction of 26 with excess of the monoperoxycarbonate did not proceed to the S,S-dioxide, even though the parent thiepin 1,1-dioxide is known to be stable at room temperature.15... [Pg.91]

It is well-known that the anodic trifluoroacetoxylation of benzene derivatives is a useful method for the preparation of phenol derivatives (Eq. 30). Schafer et al. have successfully achieved CH-functionalization of various hydrocarbons by anodic oxidation in 0.05 M Bu4NPF6/CH2Cl2 containing 20% TFA and 4% (CF3C0)20 as shown in Eqs 31 and 32 [75]. [Pg.43]

In this context see also Refs. [83a, 83b]. Comninellis and Plattner [287,287a, 288] have developed a simple method for estimating the facility of the electrochemical oxidation of organic species based on a newly defined electrochemical oxidizability index (EOI) and the degree of oxidation using the electrochemical oxygen demand (EOD). Electrochemical oxidizability index for various benzene derivatives obtained at Pt/Ti and Sn02-ABB-anodes are listed in Table 23. [Pg.214]

The proposed reaction mechanism is as follows (Scheme 16.83). Zinc metal reduces Ni(II) species to Ni(0). A nickelacyclopentadiene may be produced via coordination of two molecules of propiolates and regioselective head-to-head oxidative cyclometallation. Coordination and subsequent insertion of an allene into the Ni(II)-carbon bond give rise to a nickelacycloheptadiene intermediate. Finally, a benzene derivative is produced via reductive elimination followed by isomerization. [Pg.960]

As discussed, there are various methods of cation-radical generation. Every individual case needs its own appropriate method. A set of these methods is continuously being supplemented. For example, it was very difficult to prepare the cation-radicals of benzene derivatives with strong acceptor groups. However, some progress has been achieved, thanks to the use of fluorosulfonic acid, sometimes with addition of antimony pentafluoride, and lead dioxide (Rudenko 1994). As known, superacids stabilize cationic intermediates (including cation-radicals) and activate inorganic oxidants. The method mentioned is effective at -78°C. Meanwhile, -78°C is the boundary low temperature because the solution viscosity increases abruptly. This leads to the anisotropy of a sample and a sharp deterioration in the ESR spectrum quality. [Pg.91]

Having in mind the mentioned importance of gas-phase aromatic nitration, it should be useful to arrange benzene derivatives as electron donor with respect to nitronium ion, using IPs. These potentials have been measured in the gaseous phase and can be extracted from NIST Chemistry WebBook (Lindstrom and Mallard, 2003). The data provide an indication for the thermodynamic feasibility of their one-electron oxidation by nitronium cation. [Pg.261]

Aromatic radical-cations are generated by pulse-radiolysis of benzene derivatives in aqueous solution. Radiolysis generates solvated electrons, protons and hydroxyl radicals. The electrons are converted by reaction with peroxydisulpbate ion to form sulphate radical-anion, which is an oxidising species, and sulphate. In another proceedure, electrons and protons react with dissolved nitrous oxide to form hydroxyl radicals and water, Hydroxyl radicals are then made to react with either thallium(i) or silver(i) to generate thallium(ii) or silver(ll) which are powerfully... [Pg.188]

Electrochemical oxidation affords a simple route for the conversion of benzene derivatives to the corresponding phenol via the phenyl acetate. In practice however high yields are difficult to achieve because the product readily undergoes further... [Pg.195]

The reaction of o-nitrobenzaldehydes with some benzene derivatives in the presence of strong acid (H2S04, PPA) is a classical synthesis of acridinol N-oxides (373) (37BSF240) The synthesis works for benzyl alcohol, benzene, toluene and halobenzenes, but not for benzoic acid, benzonitrile, dimethylaniline, or nitrobenzene. Isoquinoline N-oxides (374) have been obtained from o-bromobenzaldoxime or the acetophenone derivative, and active methylene compounds with copper bromide and sodium hydride (77S760). The azobenzene cobalt tricarbonyl (375) reacts with hexafluorobut-2-yne to give a quinol-2-one (72CC1228), and the 3,4,5-tricyanopyridine (376) is formed when tetracyanoethylene reacts with an enaminonitrile (80S471). [Pg.449]

The main steps in the currently accepted catalytic cycle of the Heck reaction are oxidative addition, carbopalla-dation (G=G insertion), and / -hydride elimination. It is well established that both, the insertion as well as the elimination step, are m-stereospecific. Only in some cases has formal /r/ / i--elimination been observed. For example, exposure of the l,3-dibromo-4-(dihydronaphthyloxy)benzene derivative 16 and an alkene 1-R to a palladium source in the presence of a base led to a sequential intra-intermolecular twofold Heck reaction furnishing the alkenylated tetracyclic products 17 in good to excellent yields (Scheme 9). " In the rate-determining step, the base removes a proton in an antiperiplanar orientation from the benzylic palladium intermediate. The best amine base was found to be l,4-diazabicyclo[2.2.2]octane, which apparently has an optimal shape for this proton abstraction. [Pg.314]

In the reactions of various hydroxyalkyl-substituted benzene derivatives, which depend on the substituent attached to the phenyl ring, oxidation, ring fluorination. the addition process and substitution of a hydroxyalkyl group are all observed.22... [Pg.299]

This process competes favorably with benzylic hydrogen abstraction in toluene, less in ethylbenzene, and least in cumene (31). Such reactions do not seem significant in the oxidation of benzene derivatives. However, naphthalene reacts about 20 times as rapidly with phenyl radical as does benzene (16), and radical addition to the naphthalene nucleus may at least partly account for the slow oxidation rate in the methylnapthalenes. Among the minor products from both methylnaphthalene oxidations were compounds of molecular weight 296 ... [Pg.409]

There remains cyclobutadiene. It would appear that this elusive compound has finally been prepared. Pettit has reported that oxidation of cyclobutadiene-iron tricarbonyl98 with ceric ions releases a hydrocarbon which can be distilled out of the reaction vessel and thence made to react with dienophiles such as acetylenes to yield Dewar, benzene derivatives.99... [Pg.43]

A few other miscellaneous cyclizations are worthy of mention. o-Substituted benzene derivatives of general structure 382 (X = O, S or NH) undergo oxidative cyclization on irradiation to give the corresponding heterocyclic system (383),402 Similar behavior is exhibited by a thioamide [Eq. (102)]. Nonoxidative photoeyclization... [Pg.107]

Selective oxidation of alkanes and benzene derivatives to alcohols and phenols, respectively, are among the most difficult reactions in oxidation catalysis. Therefore, the stoichiometric hydroxylation of alkenes and aromatics performed by a-oxygen at room temperature has aroused great interest as a potential way for developing new steady state catalytic processes for the preparation of these valuable products, similar to the hydroxylation of benzene to phenol. [Pg.229]


See other pages where Benzene derivatives oxidation is mentioned: [Pg.176]    [Pg.123]    [Pg.151]    [Pg.32]    [Pg.32]    [Pg.166]    [Pg.125]    [Pg.257]    [Pg.118]    [Pg.47]    [Pg.136]    [Pg.61]    [Pg.398]    [Pg.301]    [Pg.110]    [Pg.92]    [Pg.53]    [Pg.186]    [Pg.493]    [Pg.807]   
See also in sourсe #XX -- [ Pg.355 , Pg.371 ]

See also in sourсe #XX -- [ Pg.671 ]




SEARCH



Benzene derivatives

Benzene derivatives oxidative coupling, arenes

Benzene oxidation

Benzene oxide

Indole derivatives oxidations, benzene

Oxidation derivatives

Oxidative condensation, benzene derivatives

Oxidized Derivatives

© 2024 chempedia.info