Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bedload transport

Fig. 6 Suspended sediment transport relations obtained at SMS (upstream from Mequinenza Reservoir) and MEMS (downstream from the Flix Dam) during the period (a) 2002-2003 and (b) 2003-2004. For location details see Fig. 1. (c) Suspended sediment transport relation obtained at MEMS (downstream from the Flix Dam) during the period 2005-2008. For location details see Fig. 1. Bedload transport relations obtained at SMS and MEMS during the period (d) 2002-2003 and (e) 2003-2004. Note that statically significant models are presented for all the relations (excepted at SMS in (e), see text for details) as a reference and to identify general trends... Fig. 6 Suspended sediment transport relations obtained at SMS (upstream from Mequinenza Reservoir) and MEMS (downstream from the Flix Dam) during the period (a) 2002-2003 and (b) 2003-2004. For location details see Fig. 1. (c) Suspended sediment transport relation obtained at MEMS (downstream from the Flix Dam) during the period 2005-2008. For location details see Fig. 1. Bedload transport relations obtained at SMS and MEMS during the period (d) 2002-2003 and (e) 2003-2004. Note that statically significant models are presented for all the relations (excepted at SMS in (e), see text for details) as a reference and to identify general trends...
Bedload transport body of coarse particles that moves along the bottom of a stream. [Pg.514]

Meigh. J. (1987) Bedload transport in a gravel-bed river, PhD thesis. University of East Anglia. UK. [Pg.252]

Reid, I. and Frostick, L.E. (1986) Dynamics of bedload transport in Turkey Brook, a coarse-grained alluvial channel. Earth Surface Processes Landf, 11, pp. 143-155. [Pg.252]

Sternberg. R- W. (1972). Predicting initial motion and bedload transport. In Shelf Sediment Transport (D. J. P. Swift, D. B. Duane, and O. H. Pilkey, eds.), pp. 61-82. Dowden, Hutchinson Ross, Inc., Stroudsburg, Pennsylvania. [Pg.128]

Fourth, the formulas for the cross-shore and longshore bedload transport rates rjbx and q y are devised somewhat intuitively because bedload in the surf zone has never been measured. The time-averaged rates q x and [Pg.816]

The bottom slope function Gg was introduced by Kobayashi et to account for the effect of the steep cross-shore slope Sy on the bedload transport rate and is expressed as... [Pg.816]

The landward marching computation of the present time-averaged model ends at the cross-shore location x = Xm where the mean water depth h is less than 1 cm. The probabilistic model by Kobayashi et could be used to predict the irregular wave runup distribution but no reliable data exists for suspended sand and bedload transport rates in the zone which is wet and dry intermittently. Consequently, the following simple procedure is adopted to deal with the zone with the bottom slope Sb > tan. The cross-shore total sediment transport rate = ( sx + 96x) at ic = Xm is denoted by q m- If 9xm is negative (offshore), qx is extrapolated linearly to estimate qx on the scarped face with Sb > tan ... [Pg.817]

Figure 28.4 shows the computed cross-shore variations of Figure 28.4 shows the computed cross-shore variations of <lsx, fmd q for the spilling and plunging wave tests. The cross-shore bedload transport rate q x is positive (onshore), whereas the cross-shore suspended sand transport rate qsx is negative (offshore). The absolute values of q x and q x are larger in the breaker zone near a = 4 m and near the stiU water shoreline, especially for the plunging waves. The computed total sand transport rate q = [qbx+qsx) is positive (onshore) except in the zone near the shorehne where qx < 0. The absolute value of qx is less than about 0.05cm /s but = 0 is required on the equilibrium beach. Consequently, the profile evolution is computed using the measured quasi-equilibrium profile as the initial profile. The initial profile is exposed to the wave conditions listed in Table 28.1 for 10 horns. The computed profile is shown in Fig. 28.3. The computed change of the bottom elevation Zb is less than about 5 cm. The subtle profile change is difficult to predict and measme accurately. It is noted that the fluid velocity and suspended sand concentration were not measured synchronously in these tests, resulting in no measmement of qsx ...
N. Kobayashi, A. Payo and L. D. Schmied, Cross-shore suspended sand and bedload transport on beaches, J. Geophys. Res. 113(C07001) (2008), doi 10.1029/... [Pg.823]

Further development, implementation, and interpretation of bedload transport of sediments and associated contaminants, and comparison of the relative importance of this transport process with resuspension and water column advection. [Pg.294]


See other pages where Bedload transport is mentioned: [Pg.28]    [Pg.41]    [Pg.42]    [Pg.42]    [Pg.43]    [Pg.212]    [Pg.20]    [Pg.25]    [Pg.737]    [Pg.807]    [Pg.807]    [Pg.809]    [Pg.811]    [Pg.813]    [Pg.815]    [Pg.817]    [Pg.817]    [Pg.819]    [Pg.819]    [Pg.821]    [Pg.821]    [Pg.822]    [Pg.823]    [Pg.263]   
See also in sourсe #XX -- [ Pg.481 ]




SEARCH



© 2024 chempedia.info