Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Batch reactors nonisothermal operation

Most kinetic experiments are run in batch reactors for the simple reason that they are the easiest reactor to operate on a small, laboratory scale. Piston flow reactors are essentially equivalent and are implicitly included in the present treatment. This treatment is confined to constant-density, isothermal reactions, with nonisothermal and other more complicated cases being treated in Section 7.1.4. The batch equation for component A is... [Pg.218]

In this chapter, we first consider uses of batch reactors, and their advantages and disadvantages compared with continuous-flow reactors. After considering what the essential features of process design are, we then develop design or performance equations for both isothermal and nonisothermal operation. The latter requires the energy balance, in addition to the material balance. We continue with an example of optimal performance of a batch reactor, and conclude with a discussion of semibatch and semi-continuous operation. We restrict attention to simple systems, deferring treatment of complex systems to Chapter 18. [Pg.294]

If the batch reactor operation is both nonadiabatic and nonisothermal, the complete energy balance of equation 12.3-16 must be used together with the iiaterial balance of equation 2.2-4. These constitute a set of two simultaneous, nonlincmr, first-flijer ordinary differential equations with T and fA as dependent variables and I as Iidependent variable. The two boundary conditions are T = T0 and fA = fAo (usually 0) at I = 0. These two equations usually must be solved by a numerical procedure. (See problem 12-9, which may be solved using the E-Z Solve software.)... [Pg.307]

A more quantitative analysis of the batch reactor is obtained by means of mathematical modeling. The mathematical model of the ideal batch reactor consists of mass and energy balances, which provide a set of ordinary differential equations that, in most cases, have to be solved numerically. Analytical integration is, however, still possible in isothermal systems and with reference to simple reaction schemes and rate expressions, so that some general assessments of the reactor behavior can be formulated when basic kinetic schemes are considered. This is the case of the discussion in the coming Sect. 2.3.1, whereas nonisothermal operations and energy balances are addressed in Sect. 2.3.2. [Pg.15]

The description of the nonisothermal batch reactor then involves Equation (9.3.1) and either Equation (9.3.9) or (9.3.11) for nonisothermal operation or Equation (9.3.12)... [Pg.291]

Plot the fractional conversion and temperature as a function of time for the batch reactor system described in Example 9.3.3 if the reactor is now adiabatic (U = 0). Compare your results to those for the nonisothermal situation given in Figure 9.3.3. How much energy is removed from the reactor when it is operated nonisothermally ... [Pg.312]

We shall recapitulate the governing equations in the next section and discuss the economic operation in the one following. The results on optimal control are essentially a reinterpretation of the optimal design for the tubular reactor. We shall not attempt a full derivation but hope that the qualitative description will be sufficiently convincing. The isothermal operation of a batch reactor is completely covered by the discussion in Chap. 5 of the integration of the rate equations at constant temperature. The simplest form of nonisothermal operation occurs when the reactor is insulated and the reaction follows an adiabatic path the behavior of the reactor is then entirely similar to that discussed in Chap. 8. [Pg.322]

General expression for an SBR for multiple reactions with Inflow of liquid and outflow of liquid and vapor Scheme 4 Nonisothermal operation Optimum temperatures/temperature profiles for maximizing yields/selectivltles Optimum temperatures Optimum temperature and concentration profiles In a RPR Parallel reactions Oonsecutive reactions Extension to a batch reactor Explore yourself References Bibliography... [Pg.516]

In this paper we present a meaningful analysis of the operation of a batch polymerization reactor in its final stages (i.e. high conversion levels) where MWD broadening is relatively unimportant. The ultimate objective is to minimize the residual monomer concentration as fast as possible, using the time-optimal problem formulation. Isothermal as well as nonisothermal policies are derived based on a mathematical model that also takes depropagation into account. The effect of initiator concentration, initiator half-life and activation energy on optimum temperature and time is studied. [Pg.322]

Batch processes are often nonisothermal and characterized by nonlinear dynamics, whose effects are further emphasized by intrinsically unsteady operating conditions. Hence, methodological and technological problems related to batch chemical reactors are often very challenging and require contributions from different disciplines (chemistry, chemical engineering, control engineering, measurement, and sensing). [Pg.198]

Up to now we have focused on the steady-state operation of nonisothermal reactors. In this section the unsteady-state energy balance wtU be developed and then applied to CSTRs, plug-flow reactors, and well-mixed batch and semibateh reactors. [Pg.284]

Nonuniform temperatures, or a temperature level different from that of the surroundings, are common in operating reactors. The temperature may be varied deliberately to achieve optimum rates of reaction, or high heats of reaction and limited heat-transfer rates may cause unintended nonisothermal conditions. Reactor design is usually sensitive to small temperature changes because of the exponential effect of temperature on the rate (the Arrhenius equation). The temperature profile, or history, in a reactor is established by an energy balance such as those presented in Chap. 3 for ideal batch and flow reactors. [Pg.203]


See other pages where Batch reactors nonisothermal operation is mentioned: [Pg.257]    [Pg.130]    [Pg.160]    [Pg.216]    [Pg.131]    [Pg.225]    [Pg.289]    [Pg.293]    [Pg.905]   
See also in sourсe #XX -- [ Pg.304 , Pg.305 , Pg.306 ]

See also in sourсe #XX -- [ Pg.66 , Pg.67 , Pg.68 ]




SEARCH



Batch reactor

Nonisothermal

Nonisothermal operation

Nonisothermal reactors

Nonisothermal reactors batch

Operating batch

Reactor nonisothermal reactors

Reactor operating

Reactor operation

Reactors batch reactor

© 2024 chempedia.info