Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basis polarization functions

In addition to the fundamental core and valence basis described above, one usually adds a set of so-called polarization functions to the basis. Polarization functions are functions of one higher angular momentum than appears in the atom s valence orbital space (e.g, d-functions for C, N, and O and p-functions for H). These polarization functions have exponents ( or a) which cause their radial sizes to be similar to the sizes of the primary valence orbitals... [Pg.348]

We first check the OH bond length and the dipole moment of the water monomer. When d-type basis polarization functions were added to heavy atoms, and further, p-type polarization functions added to hydrogen atoms, both DFT... [Pg.275]

In addition, polarization functions are needed. Such functions, which are of different symmetry than the AOs in the parent atom, are needed to describe the polarization of the atomic charge in the molecular environment. In the 6-31G basis, for example, the 6-31G basis is augmented with a set of d-type polarization functions on the first-row atoms in the 6-31G basis, polarization functions (p-type) are also added to the hydrogens. [Pg.63]

A partial acknowledgment of the influence of higher discrete and continuum states, not included within the wavefunction expansion, is to add, to the tmncated set of basis states, functions of the fomi T p(r)<6p(r) where dip is not an eigenfiinction of the internal Flamiltonian but is chosen so as to represent some appropriate average of bound and continuum states. These pseudostates can provide fiill polarization distortion to die target by incident electrons and allows flux to be transferred from the the open channels included in the tmncated set. [Pg.2050]

Flehre W J, Ditchfieid R and Popie J A 1972 Self-consistent molecular-orbital methods XII. Further extension of Gaussian-type basis sets for use in molecular orbital studies of organic molecules J. Chem. Phys. 56 2257-61 Flariharan P C and Popie J A 1973 The influence of polarization functions on molecular orbital hydrogenation energies Theoret. Chim. Acta. 28 213-22... [Pg.2195]

Basis sets can be extended indefinitely. The highest MOs in anions and weakly bound lone pairs, for instance, are very diffuse maybe more so than the most diffuse basis functions in a spht valence basis set. In this case, extra diffuse functions must be added to give a diffuse augmented basis set. An early example of such a basis set is 6-31+G [26]. Basis sets may also be split more than once and have many sets of polarization functions. [Pg.386]

Basis sets can be further improved by adding new functions, provided that the new functions represent some element of the physics of the actual wave function. Chemical bonds are not centered exactly on nuclei, so polarized functions are added to the basis set leading to an improved basis denoted p, d, or f in such sets as 6-31G(d), etc. Electrons do not have a very high probability density far from the nuclei in a molecule, but the little probability that they do have is important in chemical bonding, hence dijfuse functions, denoted - - as in 6-311 - - G(d), are added in some very high-level basis sets. [Pg.311]

As the Pople basis sets have further expanded to include several sets of polarization functions, / functions and so on, there has been a need for a new notation. In recent years, the types of functions being added have been indicated in parentheses. An example of this notation is 6—31G(dp,p) which means that extra sets of p and d functions have been added to nonhydrogens and an extra set of p functions have been added to hydrogens. Thus, this example is synonymous with 6—31+G. ... [Pg.82]

An older, but still used, notation specihes how many contractions are present. For example, the acronym TZV stands for triple-zeta valence, meaning that there are three valence contractions, such as in a 6—311G basis. The acronyms SZ and DZ stand for single zeta and double zeta, respectively. A P in this notation indicates the use of polarization functions. Since this notation has been used for describing a number of basis sets, the name of the set creator is usually included in the basis set name (i.e., Ahlrichs VDZ). If the author s name is not included, either the Dunning-Hay set is implied or the set that came with the software package being used is implied. [Pg.82]

Bauschlicker ANO Available for Sc through Cu (20.vl5/il0r/6/4 ). cc—pVnZ [n = D, T, Q, 5,6) Correlation-consistent basis sets that always include polarization functions. Atoms FI through Ar are available. The 6Z set goes up to Ne only. The various sets describe FI with from i2s p) to [5sAp id2f g) primitives. The Ar atoms is described by from [As pld) to ils6pAd2>f2g h) primitives. One to four diffuse functions are denoted by... [Pg.88]

A different scheme must be used for determining polarization functions and very diffuse functions (Rydberg functions). It is reasonable to use functions from another basis set for the same element. Another option is to use functions that will depict the electron density distribution at the desired distance from the nucleus as described above. [Pg.236]

Ah initio methods can yield reliable, quantitatively correct results. It is important to use basis sets with diffrise functions and high-angular-momentum polarization functions. Hyperpolarizabilities seem to be relatively insensitive to the core electron description. Good agreement has been obtained between ECP basis sets and all electron basis sets. DFT methods have not yet been used widely enough to make generalizations about their accuracy. [Pg.259]

Calculations at the 6-31G and 6-31G level provide, in many cases, quantitative results considerably superior to those at the lower STO-3G and 3-21G levels. Even these basis sets, however, have deficiencies that can only be remedied by going to triple zeta (6-31IG basis sets in HyperChem) or quadruple zeta, adding more than one set of polarization functions, adding f-type functions to heavy atoms and d-type functions to hydrogen, improving the basis function descriptions of inner shell electrons, etc. As technology improves, it will be possible to use more and more accurate basis sets. [Pg.262]

Geometric properties are quite sensitive to the basis set chosen, including the presence or absence of polarization functions (additional s and -type functions on H and on heavy atoms). [Pg.162]

Even larger basis sets are now practical for many systems. Such basis sets add multiple polarization functions per atom to the triple zeta basis set. For example, the 6-31G(2d) basis set adds two d functions per heavy atom instead of just one, while the 6-311++G(3df,3pd) basis set contains three sets of valence region functions, diffuse functions on both heavy atoms and hydrogens, and multiple polarization functions 3 d functions and 1 f function on heavy atoms and 3 p functions and 1 d function on hydrogen atoms. Such basis sets are useful for describing the interactions between... [Pg.100]

Some large basis sets specify different sets of polarization functions for heavy atoms depending upon the row of the periodic table in which they are located. For example, the 6-311+(3df,2df,p) basis set places 3 d functions and 1 f function on heavy atoms in the second and higher rows of the periodic table, and it places 2 d functions and 1 f function on first row heavy atoms and 1 p function on hydrogen atoms. Note that quantum chemists ignore H and Ffe when numbering the rows of the periodic table. [Pg.101]

The experimental bond length is 1.476. Both the triple zeta basis set and multiple polarization functions are needed to produce a very accurate structure for this molecule. [Pg.101]

G(d) 6-31G [H-Cl] Adds polarization functions to heavy atoms use for most jobs on up to medium/large sized systems. (This basis set uses the 6-component type d functions.) 15 2 6D7 ... [Pg.102]

All of the geometries predicted with the 6-31IG basis set are quite accurate. Adding two sets of diffuse functions yields a more accurate structure. However, adding additional polarization functions does not significantly affect the results. 6-311++G(d,p) thus appears to achieve the basis set limit for this model chemistry. ... [Pg.103]

Carbon atoms in free space have spherical symmetry, but a carbon atom in a molecule is a quite different entity because its charge density may well distort from spherical symmetry. To take account of the finer points of this distortion, we very often need to include d, f,. .. atomic orbitals in the basis set. Such atomic orbitals are referred to as polarization functions because their inclusion would allow a free atom to take account of the polarization induced by an external electric field or by molecule formation. 1 mentioned polarization functions briefly in Section 9.3.1. [Pg.170]

The presence of a single polarization function (either a full set of the six Cartesian Gaussians dxx, d z, dyy, dyz and dzz, or five spherical harmonic ones) on each first row atom in a molecule is denoted by the addition of a. Thus, STO/3G means the STO/3G basis set with a set of six Cartesian Gaussians per heavy atom. A second star as in STO/3G implies the presence of 2p polarization functions on each hydrogen atom. Details of these polarization functions are usually stored internally within the software package. [Pg.170]

Sometimes it turns out that we need to include a number of polarization functions, not just one of each type. The notation 4-31G(3d, 2p) indicates a standard 4-31G basis set augmented with three d-type primitive Cartesian Gaussians per centre and two p-type primitives on every hydrogen atom. Again, details of the... [Pg.170]

Electron correlation studies demand basis sets that are capable of very high accuracy, and the 6-31IG set I used for the examples above is not truly adequate. A number of basis sets have been carefully designed for correlation studies, for example the correlation consistent basis sets of Dunning. These go by the acronyms cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z and cc-pV6Z (double, triple, quadruple, quintuple and sextuple-zeta respectively). They include polarization functions by definition, and (for example) the cc-pV6Z set consists of 8. 6p, 4d, 3f, 2g and Ih basis functions. [Pg.201]

Barone also introduces two new basis sets, EPR-Il and EPR-llI. These are optimized for the calculation of hyperfine coupling constants by density functional methods. EPR-Il is a double zeta basis set with a single set of polarization functions and an enhanced s part. EPR-III is a triple zeta set including diffuse functions, double d polarization functions and a single set off functions. [Pg.314]


See other pages where Basis polarization functions is mentioned: [Pg.243]    [Pg.222]    [Pg.224]    [Pg.471]    [Pg.243]    [Pg.222]    [Pg.224]    [Pg.471]    [Pg.261]    [Pg.261]    [Pg.313]    [Pg.491]    [Pg.81]    [Pg.83]    [Pg.96]    [Pg.233]    [Pg.236]    [Pg.260]    [Pg.261]    [Pg.261]    [Pg.134]    [Pg.156]    [Pg.169]    [Pg.322]    [Pg.153]    [Pg.153]    [Pg.154]    [Pg.154]    [Pg.154]   
See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Basis functions

Polar functionalities

Polarity function

Polarization functions

© 2024 chempedia.info