Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Base protonation, rate constants

X = 0, CH2, CHCOOH, C(COOH)2, NH, NCH3 N(CH2CH=CH2), N(CHs)2 Cl Bobrowski and Das published a series of papers on the transients in the pulse radiolysis of retinyl polyenes31-37, due to their importance in a variety of biomolecular processes. They studied32 the kinetics and mechanisms of protonation reaction. The protons were released by pulse radiolysis, on a nanosecond time scale, of 2-propanol air-saturated solutions containing, in addition to the retinyl polyenes, also 0.5 M acetone and 0.2 M CCI4. Within less than 300 ns, the electron beam pulse results in formation of HC1. The protonated products of retinyl polyenes were found to absorb optically with Xmax at the range of 475-585 nm and were measured by this absorption. They found that the protonation rate constants of polyene s Schiff bases depend on the polyene chain... [Pg.336]

Then the differences in rate caused by the electronic effect of the substituent are correlated by the Hammett equation log(kz/kH) = poz, where kz is the rate constant obtained for a compound with a particular meta or para substituent, ku is the rate constant for the unsubstituted phenyl group, and crz is the substituent constant for each substituent used. The proportionality constant p relates the substituent constant (electron donating or wididrawing) and the substituent s effect on rate. It gives information about the type and extent of charge development in the activated complex. It is determined by plotting log(kz/kQ) versus ov for a series of substituents. The slope of the linear plot is p and is termed the reaction constant. For example, the reaction shown above is an elimination reaction in which a proton and the nosy late group are eliminated and a C-N n bond is formed in their place. The reaction is second order overall, first order in substrate, and first order in base. The rate constants were measured for several substituted compounds ... [Pg.113]

In this equation, is the experimentally determined hydrolytic rate constant, /Cq h the uncatalysed or solvent catalysed rate constant, and /CgH- te the specific acid- and base-catalysis rate constants respectively, ttd ky - are the general acid- and base-catalysis rate constants respectively, and [HX] and [X ] denote the concentrations of protonated and unprotonated forms of the buffer. [Pg.114]

Based on the depicted equilibrium and the observed lifetime a rate constant for the forward reaction of 10 NT s" was estimated. The slow protonation rate of the one-electron reduced fullerene n-radical anions can be understood in terms of the charge delocalization and also the hybridization of the generated carbanion. Furthermore, the heterogeneous and hydrophobic environments of the host s interior can be assumed to be beneficial for the slow-down of the protonation dynamics. In homogeneous aqueous solutions the protonation rate should be faster, a hypothesis that was substantiated by recent radiolytic experiments with bisfunctionalized fullerene derivatives. The latter compounds are soluble in aqueous solutions without employing a solubiiizer (host) and give rise to protonation rate constants of 3 x 10 M s" (38). [Pg.263]

The rate constants for the reaction of [Ni(nta)(H20)a] with various ligands in their neutral and protonated forms have been reported, as has that for the formation of the bis-complex of nickel(n) with the purine base theophylline. Rate constants have also been reported for the formation of bis-complexes of cobalt(n), nickel(n), and copper(n) with L-proline, L-hydroxypyroline, glycyl-L-leucine, , L-Ieucylglycine, a-alanine, jS-alanine, iminodiacetic acid, iminodipropionic acid, and aspartic acid. ... [Pg.289]

Table 4-1 lists some rate constants for acid-base reactions. A very simple yet powerful generalization can be made For normal acids, proton transfer in the thermodynamically favored direction is diffusion controlled. Normal acids are predominantly oxygen and nitrogen acids carbon acids do not fit this pattern. The thermodynamicEilly favored direction is that in which the conventionally written equilibrium constant is greater than unity this is readily established from the pK of the conjugate acid. Approximate values of rate constants in both directions can thus be estimated by assuming a typical diffusion-limited value in the favored direction (most reasonably by inspection of experimental results for closely related... [Pg.149]

FIGURE 16.11 Specific and general acid-base catalysis of simple reactions in solution may be distinguished by determining the dependence of observed reaction rate constants (/sobs) pH and buffer concentration, (a) In specific acid-base catalysis, or OH concentration affects the reaction rate, is pH-dependent, but buffers (which accept or donate H /OH ) have no effect, (b) In general acid-base catalysis, in which an ionizable buffer may donate or accept a proton in the transition state, is dependent on buffer concentration. [Pg.511]

H/D exchange of H and Hg protons of sulfone 86 and estimated the difference in the free energies of activation for 79a and 79b to be < 1.2 kcal mol , based on the kjk value of 3 0.5. In the base-catalyzed H/D exchange of 87, kjk = 1.6, where k and k are the rate constants of H/D exchange of H, and H, respectively. Based on the small kjk value. Brown and colleagues suggested that if the carbanion is pyramidal, the steric stabilities of 79a and 79b are almost identical. Meanwhile, based on their C-NMR study Chassaing and Marquet proposed that the hybridization of the carbon atom of the sulfonyl carbanion, PhSOjCHj , would be between sp and sp . [Pg.605]

Although the concepts of specific acid and specific base catalysis were useful in the analysis of some early kinetic data, it soon became apparent that any species that could effect a proton transfer with the substrate could exert a catalytic influence on the reaction rate. Consequently, it became desirable to employ the more general Br0nsted-Lowry definition of acids and bases and to write the reaction rate constant as... [Pg.221]

Seminal studies on the dynamics of proton transfer in the triplet manifold have been performed on HBO [109]. It was found that in the triplet states of HBO, the proton transfer between the enol and keto tautomers is reversible because the two (enol and keto) triplet states are accidentally isoenergetic. In addition, the rate constant is as slow as milliseconds at 100 K. The results of much slower proton transfer dynamics in the triplet manifold are consistent with the earlier summarization of ESIPT molecules. Based on the steady-state absorption and emission spectroscopy, the changes of pKa between the ground and excited states, and hence the thermodynamics of ESIPT, can be deduced by a Forster cycle [65]. Accordingly, compared to the pKa in the ground state, the decrease of pKa in the... [Pg.244]

When the log rate constants were subjected to an excess acidity analysis, log k - log Ch+ - log h2o was found to be linear in X in both cases, whereas log k - log Ch+ was not. This again suggests the involvement of a water molecule in the rate-determining step, probably acting as a base, reacting with protonated [7] as shown in Scheme 9.248... [Pg.45]

In summary, there now exists a body of data for the reactions of carbocations where the values of kjkp span a range of > 106-fold (Table 1). This requires that variations in the substituents at a cationic center result in a >8 kcal mol-1 differential stabilization of the transition states for nucleophile addition and proton transfer which have not yet been fully rationalized. We discuss in this review the explanations for the large changes in the rate constant ratio for partitioning of carbocations between reaction with Bronsted and Lewis bases that sometimes result from apparently small changes in carbocation structure. [Pg.72]

This section deals with the quantitative description of the proton transfer processes (denoted by Eqs. (4) and (6) in Scheme 1), identified by the qualitative NMR experiments on the acid/base behavior of the Mo(IV), W(IV), Re(V), Tc(V), and Os(VI) systems as described in Section II. The data obtained on the signal behavior from these similar complexes were used to simulate spectra and model the proton exchange processes to finally obtain rate constants associated therewith. [Pg.83]

The similarity in the rate laws does not allow a clear choice to be made between mechanisms, but Mechanism A is required in H20 by the observation of general base catalysis. However, the relative stability of the (red) T° intermediate in Me2SO (this is dependent on the nature of the AA side chain, cf. Section III,C) in the absence of proton-ated amine makes us prefer Mechanism B for reaction in this solvent, since the solvent is unable to assist the departure of MeOH. The similar catalytic rate constants found for B = imidazole, Af-methylimidazole (26) suggest that transfer of the proton from T+ to the alcohol function remains stepwise (i.e., via T°) since N-methylimidazole cannot carry out a concerted transfer. Such general acid-catalyzed loss of MeOH from T° supports a suggestion made many years ago by Burnett and Davies relating to purely organic esters (62). [Pg.358]


See other pages where Base protonation, rate constants is mentioned: [Pg.337]    [Pg.337]    [Pg.568]    [Pg.27]    [Pg.229]    [Pg.44]    [Pg.357]    [Pg.71]    [Pg.605]    [Pg.137]    [Pg.765]    [Pg.324]    [Pg.12]    [Pg.345]    [Pg.70]    [Pg.173]    [Pg.113]    [Pg.115]    [Pg.292]    [Pg.851]    [Pg.43]    [Pg.108]    [Pg.151]    [Pg.152]    [Pg.377]    [Pg.178]    [Pg.196]    [Pg.197]    [Pg.29]    [Pg.92]    [Pg.114]    [Pg.181]    [Pg.345]    [Pg.145]    [Pg.48]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Base protonation

Bases protonic

Constants protons

Proton rate constant

Proton rates

Protonated base

Protonation constant

Protonation rate constants

Rates protonation

© 2024 chempedia.info