Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basalt, redox conditions

Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two sections discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described. [Pg.6]

Preliminary Assessment of Oxygen Consumption and Redox Conditions in a Nuclear Waste Repository in Basalt... [Pg.178]

Since crushed basalt has been recommended as a major backfill component (1), experiments were completed to evaluate the rate of dissolved oxygen consumption and the redox conditions that develop in basalt-water systems under conditions similar to those expected in the near-field environment of a waste package. Two approaches to this problem were used in this study (l)the As(III)/As(V) redox couple as an indirect method of monitoring Eh and (2) the measurement of dissolved oxygen levels in solutions from hydrothermal experiments as a function of time. The first approach involves oxidation state determinations on trace levels of arsenic in solution (4-5) and provides an estimate of redox conditions over restricted intervals of time, depending on reaction rates and sensitivities of the analyses. The arsenic oxidation state approach also provides data at conditions that are more reducing than in solutions with detectable levels of dissolved oxygen. [Pg.179]

Applications. In the following paragraphs, the conditions (temperature, time, water/rock mass ratio, surface area) and the results on closed system oxygen consumption and redox conditions of the basalt-water experiments are compared to expected conditions in the open system backfill and near-field environment of an NWRB. Crushing of basalt for pneumatically emplaced backfill could result in a substantial fraction of finegrained basalt with a variety of active surface sites for reaction similar to the crushed basalt used in the experiments. The effects of crushing on rates of mineral-fluid reactions are well documented (10,26). [Pg.188]

E. L. Shock (1990) provides a different interpretation of these results he criticizes that the redox state of the reaction mixture was not checked in the Miller/Bada experiments. Shock also states that simple thermodynamic calculations show that the Miller/Bada theory does not stand up. To use terms like instability and decomposition is not correct when chemical compounds (here amino acids) are present in aqueous solution under extreme conditions and are aiming at a metastable equilibrium. Shock considers that oxidized and metastable carbon and nitrogen compounds are of greater importance in hydrothermal systems than are reduced compounds. In the interior of the Earth, CO2 and N2 are in stable redox equilibrium with substances such as amino acids and carboxylic acids, while reduced compounds such as CH4 and NH3 are not. The explanation lies in the oxidation state of the lithosphere. Shock considers the two mineral systems FMQ and PPM discussed above as particularly important for the system seawater/basalt rock. The FMQ system acts as a buffer in the oceanic crust. At depths of around 1.3 km, the PPM system probably becomes active, i.e., N2 and CO2 are the dominant species in stable equilibrium conditions at temperatures above 548 K. When the temperature of hydrothermal solutions falls (below about 548 K), they probably pass through a stability field in which CH4 and NII3 predominate. If kinetic factors block the achievement of equilibrium, metastable compounds such as alkanes, carboxylic acids, alkyl benzenes and amino acids are formed between 423 and 293 K. [Pg.191]


See other pages where Basalt, redox conditions is mentioned: [Pg.107]    [Pg.178]    [Pg.179]    [Pg.189]    [Pg.497]    [Pg.331]    [Pg.74]    [Pg.31]    [Pg.146]    [Pg.178]    [Pg.188]    [Pg.3757]    [Pg.3769]    [Pg.65]   


SEARCH



Basalt

Redox conditions

© 2024 chempedia.info