Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Balancing Simple Equations

The principles outlined so far may be used to calculate the tower height as long as it is possible to estimate the temperature as a function of Hquid concentration. The classical basis for such an estimate is the assumption that the heat of solution manifests itself entirely in the Hquid stream. It is possible to relate the temperature increase experienced by the Hquid flowing down through the tower to the concentration increase through a simple enthalpy balance, equation 68, and thus correct the equiHbrium line in ajy—a diagram for the heat of solution as shown in Figure 9. [Pg.28]

Now you can reconsider the material balance equations by adding those additional factors identified in the previous step. If necessary, estimates of unaccountable losses will have to be calculated. Note that, in the case of a relatively simple manufacturing plant, preparation of a preliminary material-balance system and its refinement (Steps 14 and 15) can usefully be combined. For more-complex P2 assessments, however, two separate steps are likely to be more appropriate. An important rule to remember is that the inputs should ideally equal the outputs - but in practice this will rarely be the case. Some judgment will be required to determine what level of accuracy is acceptable, and we should have an idea as to what the unlikely sources of errors are (e.g., evaporative losses from outside holding ponds may be a materials loss we cannot accurately account for). In the case of high concentrations of hazardous wastes, accurate measurements are needed to develop cost-effective waste-reduction options. It is possible that the material balance for a number of unit operations will need to be repeated. Again, continue to review, refine, and, where necessary, expand your database. The compilation of accurate and comprehensive data is essential for a successful P2 audit and subsequent waste-reduction action plan. Remember - you can t reduce what you don t know is therel... [Pg.378]

In Chapter 2 we developed models based on analyses of systems that had simple inputs. The right-hand side was either a constant or it was simple function of time. In those systems we did not consider the cause of the mass flow—that was literally external to both the control volume and the problem. The case of the flow was left implicit. The pump or driving device was upstream from the control volume, and all we needed to know were the magnitude of the flow the device caused and its time dependence. Given that information we could replace the right-hand side of the balance equation and integrate to the functional description of the system. [Pg.113]

To balance equations 10.2 and 10.3 in terms of electrical charge it has been necessary to add four electrons to the right-hand side of equation 10.2 and to the left-hand-side of equation 10.3. However, simple addition and rationalisation of equations 10.2 and 10.3 yields equation 10.1. [Pg.110]

To illustrate how a relatively simple equation can be written and balanced, consider a reaction used to launch astronauts into space (Figure 3.4). The reactants are two liquids, hydrazine and dinitrogen tetraoxide, whose molecular formulas are N2H4 and N204, respectively. The products of the reaction are gaseous nitrogen, N2, and water vapor. To write a balanced equation for this reaction, proceed as follows ... [Pg.60]

Avogadro s Hypothesis provides a method for identifying the molecules present in a gas. Also, it explains why the volumes of gases that react with each other are in the same simple ratio as are the moles in the balanced equation. The importance of these results makes the explana-... [Pg.52]

By way of illustration, taking the simple esterification of butanol with acetic acid, the balanced equation for the reaction is ... [Pg.45]

For the computation of compressible flow, the pressure-velocity coupling schemes previously described can be extended to pressure-velocity-density coupling schemes. Again, a solution of the linearized, compressible momentum equation obtained with the pressure and density values taken from a previous solver iteration in general does not satisfy the mass balance equation. In order to balance the mass fluxes into each volume element, a pressure, density and velocity correction on top of the old values is computed. Typically, the detailed algorithms for performing this task rely on the same approximations such as the SIMPLE or SIMPLEC schemes outlined in the previous paragraph. [Pg.160]

Table 5.4-3 summarizes the design equations and analytical relations between concentration, C/(, and batch time, t, or residence time, t, for a homogeneous reaction A —> products with simple reaction kinetics (Van Santen etal., 1999). Balance equations for multicomponent homogeneous systems for any reaction network and for gas-liquid and gas-liquid-solid systems are presented in Tables 5.4-7 and 5.4.8 at the end of Section 5.4.3. [Pg.283]

While the principle of the mass balance is very simple, its application can often be quite difficult. It is important therefore to have a clear understanding of the nature of the system (physical model) which is to be modelled by the mass balance equations and also of the methodology of modelling. [Pg.17]

A simple substitution of the value Yj in the balance equation enables the steady-state concentration X i to be determined, where... [Pg.172]

For a simple binary distillation, the component balance equation becomes... [Pg.202]

The Flory principle allows a simple relationship between the rate constants of macromolecular reactions (whose number is infinite) with the corresponding rate constants of elementary reactions. According to this principle all chemically identical reactive centers are kinetically indistinguishable, so that the rate constant of the reaction between any two molecules is proportional to that of the elementary reaction between their reactive centers and to the numbers of these centers in reacting molecules. Therefore, the material balance equations will comprise as kinetic parameters the rate constants of only elementary reactions whose number is normally rather small. [Pg.170]

At the simplest level, the rate of flow-induced aggregation of compact spherical particles is described by Smoluchowski s theory [Eq. (32)]. Such expressions may then be incorporated into population balance equations to determine the evolution of the agglomerate size distribution with time. However with increase in agglomerate size, complex (fractal) structures may be generated that preclude analysis by simple methods as above. [Pg.180]

For many processes the work term will be zero, or negligibly small, and equation 3.7 reduces to the simple heat balance equation ... [Pg.63]

In this case, only the material balance will be solved in order to keep the problem simple. If the material balance is to be solved, then a series of material balance equations can be written for the flowsheet in Figure 13.13a ... [Pg.276]

If no KIE is present, the contribution of the derivative atom to the measured 8 value of the derivatised compound can be calculated using a simple mass balance equation (14.2), where n is number of moles of the isotope of interest, F is the fractional abundance of the isotope of interest, c refers to the compound of interest, d refers to the derivative group and... [Pg.406]

Four mass balance equations can be written, one for each medium, resulting in a total of four unknown fugacities, enabling simple algebraic solution as shown in Table 1.5.9. From the four fugacities, the concentration, amounts and rates of all transport and transformation processes can be deduced, yielding a complete mass balance. [Pg.26]

Eqs. (19) and (20) were derived applying the steady-state approximation to the oxidized Fe-TAML species and using the mass balance equation [Fe-TAML] = 1 + [oxidized Fe-TAML] ([Fe-TAML] is the total concentration of all iron species, which is significantly lower than the concentrations of H2O2 and ED). The oxidation of ruthenium dye 8 is a zeroth-order reaction in 8. This implies that n[ED] i+ [H202]( i+ m). Eq. (19) becomes very simple, i.e.,... [Pg.505]

Our discussion of multiphase CFD models has thus far focused on describing the mass and momentum balances for each phase. In applications to chemical reactors, we will frequently need to include chemical species and enthalpy balances. As mentioned previously, the multifluid models do not resolve the interfaces between phases and models based on correlations will be needed to close the interphase mass- and heat-transfer terms. To keep the notation simple, we will consider only a two-phase gas-solid system with ag + as = 1. If we denote the mass fractions of Nsp chemical species in each phase by Yga and Ysa, respectively, we can write the species balance equations as... [Pg.296]

The importance of chemical-reaction kinetics and the interaction of the latter with transport phenomena is the central theme of the contribution of Fox from Iowa State University. The chapter combines the clarity of a tutorial with the presentation of very recent results. Starting from simple chemistry and singlephase flow the reader is lead towards complex chemistry and two-phase flow. The issue of SGS modeling discussed already in Chapter 2 is now discussed with respect to the concentration fields. A detailed presentation of the joint Probability Density Function (PDF) method is given. The latter allows to account for the interaction between chemistry and physics. Results on impinging jet reactors are shown. When dealing with particulate systems a particle size distribution (PSD) and corresponding population balance equations are intro-... [Pg.398]

Equation 1.5-1 used as a mass balance is normally applied to a chemical species. For a simple system (Section 1.4.4), only one equation is required, and it is a matter of convenience which substance is chosen. For a complex system, the maximum number of independent mass balance equations is equal to R, the number of chemical equations or noncomponent species. Here also it is largely a matter of convenience which species are chosen. Whether the system is simple or complex, there is usually only one energy balance. [Pg.17]

Our treatment of chemical kinetics in Chapters 2-10 is such that no previous knowledge on the part of the student is assumed. Following the introduction of simple reactor models, mass-balance equations and interpretation of rate of reaction in Chapter 2, and measurement of rate in Chapter 3, we consider the development of rate laws for single-phase simple systems in Chapter 4, and for complex systems in Chapter 5. This is... [Pg.681]


See other pages where Balancing Simple Equations is mentioned: [Pg.1115]    [Pg.162]    [Pg.78]    [Pg.652]    [Pg.208]    [Pg.163]    [Pg.43]    [Pg.479]    [Pg.294]    [Pg.312]    [Pg.5]    [Pg.47]    [Pg.70]    [Pg.155]    [Pg.108]    [Pg.175]    [Pg.276]    [Pg.36]    [Pg.73]    [Pg.83]    [Pg.370]    [Pg.520]    [Pg.401]    [Pg.300]    [Pg.21]    [Pg.3]   
See also in sourсe #XX -- [ Pg.350 ]




SEARCH



Balance equation

© 2024 chempedia.info