Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bacteria pathways

In shallow estuaries and lagoons subject to macroalgal blooms, the collapse of blooms and subsequent turnover of N can have major ecosystem level effects. Release of organic N may alter food webs toward heterotrophic bacteria pathways (Valiela et al, 1997), depleting water and sediments of oxygen. If severe, the result is die-off of resident fish and invertebrates. In addition, sediment anoxia may cause... [Pg.934]

The other synthesis pathway bypasses the intermediary step of forming or-acetolactate (identical to the lactic acid bacteria pathway), by the reaction of ethanal-TPP and pyruvate ... [Pg.189]

Purification of drinking water by adding CI2 to kill bacteria is a source of electrophilic chlorine and contributes a nonenzymatic pathway for a chlorina tion and subsequent chloroform formation Al though some of the odor associated with tap water may be due to chloroform more of it probably results from chlorination of algae produced organic com pounds... [Pg.767]

The autotropic pathway for acetate synthesis among the acetogenic bacteria has been examined (67). Quantitative fermentation of one mole of glucose [50-99-7] yields three moles of acetic acid, while two moles of xylose [58-86-6] C H qO, yields five moles. The glucose reaction is... [Pg.69]

Some chemicals such as iadigo, tryptophan, and phenylalanine are overproduced ia bacteria by pathway engineering (36—38). In this method, the enzymes iavolved ia the entire pathway are overproduced. In addition, the host bacterium is also altered such that the carbon flow is directed toward the engiaeered pathway (38). E. colih.2LS been modified to overproduce iadigo and tryptophan and phenylalanine. CoTjnebacteriumglutamicum has been engiaeered to overproduce tryptophan from 28 to 43 g/L. Similarly, attempts are underway to overproduce several vitamins by pathway engineering (34,38). [Pg.250]

Biotin is produced by a multistep pathway in a variety of fungi, bacteria, and plants (50—56). The estabUshed pathway (50,56) in E. coli is shown in Figure 6. However, Htde is known about the initial steps that lead to pimelyl-Co A or of the mechanism of the transformation of desthiobiotin to biotin. Pimelic acid is beheved to be the natural precursor of biotin for some microorganisms (51). [Pg.32]

The pathways for thiamine biosynthesis have been elucidated only partiy. Thiamine pyrophosphate is made universally from the precursors 4-amino-5-hydroxymethyl-2-methylpytimidinepyrophosphate [841-01-0] (47) and 4-methyl-5-(2-hydroxyethyl)thiazolephosphate [3269-79-2] (48), but there appear to be different pathways ia the eadier steps. In bacteria, the early steps of the pyrimidine biosynthesis are same as those of purine nucleotide biosynthesis, 5-Aminoimidazole ribotide [41535-66-4] (AIR) (49) appears to be the sole and last common iatermediate ultimately the elements are suppHed by glycine, formate, and ribose. AIR is rearranged in a complex manner to the pyrimidine by an as-yet undetermined mechanism. In yeasts, the pathway to the pyrimidine is less well understood and maybe different (74—83) (Fig. 9). [Pg.92]

In contrast to vitamin K, there has been considerably more activity on fermentative approaches to vitamin (50). The biosynthetic pathway to vitamin K2 is analogous to that of vitamin except that poly(prenylpyrophosphates) are the reactive alkylating agent (51,52). Menaquinones of varying chain lengths from to have been isolated from bacteria. The most common forms are vitamin K2 35, (40) (45) significant amount of K2 20)... [Pg.154]

Yeast (qv) metabolize maltose and glucose sugars via the Embden-Meyerhof pathway to pymvate, and via acetaldehyde to ethanol. AH distiUers yeast strains can be expected to produce 6% (v/v) ethanol from a mash containing 11% (w/v) starch. Ethanol concentration up to 18% can be tolerated by some yeasts. Secondary products (congeners) arise during fermentation and are retained in the distiUation of whiskey. These include aldehydes, esters, and higher alcohols (fusel oHs). NaturaHy occurring lactic acid bacteria may simultaneously ferment within the mash and contribute to the whiskey flavor profile. [Pg.84]

The individual steps in the elongation of the fatty acid chain are quite similar in bacteria, fungi, plants, and animals. The ease of purification of the separate enzymes from bacteria and plants made it possible in the beginning to sort out each step in the pathway, and then by extension to see the pattern of biosynthesis in animals. The reactions are summarized in Figure 25.7. The elongation reactions begin with the formation of acetyl-ACP and malonyl-ACP, which... [Pg.808]

Both prokaryotes and eukaryotes are capable of introducing a single cis double bond in a newly synthesized fatty acid. Bacteria such as E. coli carry out this process in an Og-independent pathway, whereas eukaryotes have adopted an Og-dependent pathway. There is a fundamental chemical difference between the two. The Og-dependent reaction can occur anywhere in the fatty acid chain. [Pg.814]

Phosphatidylethanolamine synthesis begins with phosphorylation of ethanol-amine to form phosphoethanolamine (Figure 25.19). The next reaction involves transfer of a cytidylyl group from CTP to form CDP-ethanolamine and pyrophosphate. As always, PP, hydrolysis drives this reaction forward. A specific phosphoethanolamine transferase then links phosphoethanolamine to the diacylglycerol backbone. Biosynthesis of phosphatidylcholine is entirely analogous because animals synthesize it directly. All of the choline utilized in this pathway must be acquired from the diet. Yeast, certain bacteria, and animal livers, however, can convert phosphatidylethanolamine to phosphatidylcholine by methylation reactions involving S-adenosylmethionine (see Chapter 26). [Pg.821]

Aldol reactions occur in many biological pathways, but are particularly important in carbohydrate metabolism, where enzymes called aldolases catalyze the addition of a ketone enolate ion to an aldehvde. Aldolases occur in all organisms and are of two types. Type 1 aldolases occur primarily in animals and higher plants type II aldolases occur primarily in fungi and bacteria. Both types catalyze the same kind of reaction, but type 1 aldolases operate place through an enamine, while type II aldolases require a metal ion (usually 7n2+) as Lewis acid and operate through an enolate ion. [Pg.901]

The terpenoid precursor isopentenyl diphosphate, formerly called isopentenyl pyrophosphate and abbreviated IPP, is biosynthesized by two different pathways depending on the organism and the structure of the final product. In animals and higher plants, sesquiterpenoids and triterpenoids arise primarily from the mevalonate pathway, whereas monoterpenoids, diterpenoids, and tetraterpenoids are biosynthesized by the 1-deoxyxylulose 5-phosphate (DXP) pathway. In bacteria,... [Pg.1071]

In bacteria, each step in fatty-acid sjmthesis is catalyzed by separate enzymes. In vertebrates, however, fatty-acid synthesis is catalyzed by a large, multienzyme complex called a synthase that contains two identical subunits of 2505 amino acids each and catalyzes all steps in the pathway. An overview of fatty-acid biosynthesis is shown in Figure 29.5. [Pg.1138]


See other pages where Bacteria pathways is mentioned: [Pg.188]    [Pg.232]    [Pg.23]    [Pg.252]    [Pg.188]    [Pg.232]    [Pg.23]    [Pg.252]    [Pg.28]    [Pg.29]    [Pg.254]    [Pg.45]    [Pg.476]    [Pg.481]    [Pg.285]    [Pg.287]    [Pg.197]    [Pg.215]    [Pg.410]    [Pg.71]    [Pg.30]    [Pg.127]    [Pg.177]    [Pg.325]    [Pg.120]    [Pg.97]    [Pg.25]    [Pg.652]    [Pg.820]    [Pg.122]    [Pg.368]    [Pg.117]    [Pg.117]    [Pg.143]    [Pg.3]    [Pg.50]    [Pg.51]    [Pg.35]    [Pg.248]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Bacteria denitrification pathway

Bacteria metabolic pathways

Bacteria secretion pathways

Bacteria sorting pathways

Bacteria tryptophan pathway, gene-enzyme

Metabolic pathways in bacteria

Nitrifying bacteria denitrification pathway

Other Catabolic Pathways in Bacteria

© 2024 chempedia.info