Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

B DNA

Swaminathan S, G Ravishanker and D L Beveridge 1991. Molecular Dynamics of B-DNA Indudh Water and Counterions - A 140-ps Trajectory for d(CGCGAATTCGCG) Based on the Grom Force Field. Journal of the American Chemical Society 113 5027-5040. [Pg.471]

The structure proposed by Watson and Crick was modeled to fit crystallographic data obtained on a sample of the most common form of DNA called B DNA Other forms include A DNA which is similar to but more compact than B DNA and Z DNA which IS a left handed double helix... [Pg.1169]

By analogy to the levels of structure of proteins the primary structure of DNA IS the sequence of bases along the polynucleotide chain and the A DNA B DNA and Z DNA helices are varieties of secondary structures... [Pg.1169]

We have so far described the structure of DNA as an extended double helix The crys tallographic evidence that gave rise to this picture was obtained on a sample of DNA removed from the cell that contained it Within a cell—its native state—DNA almost always adopts some shape other than an extended chain We can understand why by doing a little arithmetic Each helix of B DNA makes a complete turn every 3 4 X 10 m and there are about 10 base parrs per turn A typical human DNA contains 10 base parrs Therefore... [Pg.1170]

Section 28 8 The most common form of DNA is B DNA which exists as a right handed double helix The carbohydrate-phosphate backbone lies on the outside the punne and pyrimidine bases on the inside The double helix IS stabilized by complementary hydrogen bonding (base pairing) between adenine (A) and thymine (T) and guanine (G) and cytosine (C)... [Pg.1188]

In our last example we return to the issue of the possible damaging effects of the standard geometry constraints. Two long trajectories have been computed for a partially hydrated dodecamer DNA duplex of the previous example, first by using ICMD and second with Cartesian coordinate molecular dynamics without constraints [54]. Both trajectories started from the same initial conformation with RMSD of 2.6 A from the canonical B-DNA form. Figure 5 shows the time evolution of RMSD from the canonical A and B conformations. Each point in the figure corresponds to a 15 ps interval and shows an average RMSD value. We see that both trajectories approach the canonical B-DNA, while the RMSD... [Pg.128]

Figure 5 Time dependence of RMSD of atomic coordinates from canonical A- and B-DNA forms m two trajectories of a partially hydrated dodecamer duplex. The A and B (A and B coiTespond to A and B forms) trajectories started from the same state and were computed with internal and Cartesian coordinates as independent variables, respectively. (From Ref. 54.)... Figure 5 Time dependence of RMSD of atomic coordinates from canonical A- and B-DNA forms m two trajectories of a partially hydrated dodecamer duplex. The A and B (A and B coiTespond to A and B forms) trajectories started from the same state and were computed with internal and Cartesian coordinates as independent variables, respectively. (From Ref. 54.)...
Figure 7.1 Schematic drawing of B-DNA. Each atom of the sugar-phosphate backbones of the double helix is represented as connected circles within ribbons. The two sugar-phosphate backbones are highlighted by orange ribbons. The base pairs that are connected to the backbone are represented as blue planks. Figure 7.1 Schematic drawing of B-DNA. Each atom of the sugar-phosphate backbones of the double helix is represented as connected circles within ribbons. The two sugar-phosphate backbones are highlighted by orange ribbons. The base pairs that are connected to the backbone are represented as blue planks.
Notice that in B-DNA the central axis of this double helix goes through the middle of the base pairs and that the base pairs are perpendicular to the axis. [Pg.121]

Early diffraction photographs of such DNA fibers taken by Rosalind Franklin and Maurice Wilkins in London and interpreted by James Watson and Francis Crick in Cambridge revealed two types of DNA structures A-DNA and B-DNA. The B-DNA form is obtained when DNA is fully hydrated as it is in vivo. A-DNA is obtained under dehydrated nonphysiological conditions. Improvements in the methods for the chemical synthesis of DNA have recently made it possible to study crystals of short DNA molecules of any selected sequence. These studies have essentially confirmed the refined fiber diffraction models for A- and B-DNA and in addition have given details of small structural variations for different DNA sequences. Furthermore, a new structural form of DNA, called Z-DNA, has been discovered. [Pg.121]

Figure 7.2 Three helical forms of DNA, each containing 22 nucleotide pairs, shown in both side and top views. The sugar-phosphate backbone is dark the paired nucleotide bases are light, (a) B-DNA, which is the most common form in cells, (b) A-DNA, which is obtained under dehydrated nonphysiological conditions. Notice the hole along the helical axis in this form, (c) Z-DNA, which can be formed by certain DNA sequences under special circumstances. (Courtesy of Richard Feldmann.)... Figure 7.2 Three helical forms of DNA, each containing 22 nucleotide pairs, shown in both side and top views. The sugar-phosphate backbone is dark the paired nucleotide bases are light, (a) B-DNA, which is the most common form in cells, (b) A-DNA, which is obtained under dehydrated nonphysiological conditions. Notice the hole along the helical axis in this form, (c) Z-DNA, which can be formed by certain DNA sequences under special circumstances. (Courtesy of Richard Feldmann.)...
In B-DNA because the helical axis runs through the center of each base pair and the base pairs are stacked nearly perpendicular to the helical axis (see Figures 7.1 and 7.5), the major and minor grooves are of similar depths. [Pg.122]

Figure 7.5 Schematic diagram illustrating the major and minor grooves in A- and B-DNA. Figure 7.5 Schematic diagram illustrating the major and minor grooves in A- and B-DNA.
The specific protein-DNA interactions described in this book are all with DNA in its regular B-form, or, in some cases with distorted B-DNA. In biological systems DNA appears not to adopt the A conformation, although double-stranded RNA does preferentially adopt this conformation in vivo. Whether or not Z-DNA occurs in nature is a matter of controversy. However, the formation of A-DNA and Z-DNA in vitro does illustrate the large structural changes that DNA can be forced to undergo. [Pg.124]

Figure 7.7 Color codes for the recognition patterns at the edges of the base pairs in the major (a) and minor (b) grooves of B-DNA. Hydrogen-bond acceptors are red hydrogen-bond donors are blue. The methyl group of thymine is yellow, while the corresponding H atom of cytosine is white. Figure 7.7 Color codes for the recognition patterns at the edges of the base pairs in the major (a) and minor (b) grooves of B-DNA. Hydrogen-bond acceptors are red hydrogen-bond donors are blue. The methyl group of thymine is yellow, while the corresponding H atom of cytosine is white.
Bacteriophage repressor proteins provide excellent examples of sequence-specific interactions between the side chains of a protein and bases lining the floor of the major groove of B-DNA. As we shall see, to fit the protein s recognition module into this groove it has to be made even wider in other words, the B-DNA has to be distorted. [Pg.125]

Matthews was able to show, by model building on a graphics display, that the two recognition helices of the Cro dimer indeed fitted very well into the major groove of a piece of regular B-DNA as seen in Figure 8.9. The orientation... [Pg.134]

The binding model, suggested by Brian Matthews, is shown schematically in (a) with connected circles for the Ca positions, (b) A schematic diagram of the Cro dimer with different colors for the two subunits, (c) A schematic space-filling model of the dimer of Cro bound to a bent B-DNA molecule. The sugar-phosphate backbone of DNA is orange, and the bases ate yellow. Protein atoms are colored red, blue, green, and white, [(a) Adapted from D. Ohlendorf et al., /. Mol. Evol. 19 109-114, 1983. (c) Courtesy of Brian Matthews.]... [Pg.134]

Approximately 10 base pairs are required to make one turn in B-DNA. The centers of the palindromic sequences in the DNA-binding regions of the operator are also separated by about 10 base pairs (see Table 8.1). Thus if one of the recognition a helices binds to one of the palindromic DNA sequences, the second recognition a helix of the protein dimer is poised to bind to the second palindromic DNA sequence. [Pg.135]

Figure 8.23 The helix-turn-helix motifs of the subunits of both the PurR and the lac repressor subunits bind to the major groove of DNA with the N-terminus of the second helix, the recognition helix, pointing into the groove. The two hinge helices of each arm of the V-shaped tetramer bind adjacent to each other in the minor groove of DNA, which is wide and shallow due to distortion of the B-DNA structure. (Adapted from M.A. Schumacher et al.. Science 266 763-770, 1994.)... Figure 8.23 The helix-turn-helix motifs of the subunits of both the PurR and the lac repressor subunits bind to the major groove of DNA with the N-terminus of the second helix, the recognition helix, pointing into the groove. The two hinge helices of each arm of the V-shaped tetramer bind adjacent to each other in the minor groove of DNA, which is wide and shallow due to distortion of the B-DNA structure. (Adapted from M.A. Schumacher et al.. Science 266 763-770, 1994.)...
The central 10 base pairs of the palindromic DNA molecule have a regular B-DNA structure. Between base pairs 5 and 6 in each half of the fragment (base pairs are counted from the center) there is a 40° kink which causes these base pairs to be unstacked (Figure 8.24a). After this localized kink the two end regions have an essentially B-DNA structure. The kink occurs at a TG step in the sequence GTG. These TG steps at positions 5 and 6 are highly conserved in both halves of different CAP-binding sites, presumably in part because they facilitate kinking. [Pg.146]


See other pages where B DNA is mentioned: [Pg.117]    [Pg.160]    [Pg.249]    [Pg.249]    [Pg.249]    [Pg.249]    [Pg.250]    [Pg.250]    [Pg.179]    [Pg.112]    [Pg.127]    [Pg.129]    [Pg.446]    [Pg.121]    [Pg.121]    [Pg.122]    [Pg.123]    [Pg.123]    [Pg.124]    [Pg.124]    [Pg.124]    [Pg.125]    [Pg.126]    [Pg.126]    [Pg.134]    [Pg.135]    [Pg.138]    [Pg.138]    [Pg.138]    [Pg.147]   
See also in sourсe #XX -- [ Pg.43 , Pg.56 , Pg.63 ]

See also in sourсe #XX -- [ Pg.84 , Pg.87 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.20 , Pg.24 , Pg.25 , Pg.487 ]

See also in sourсe #XX -- [ Pg.93 ]

See also in sourсe #XX -- [ Pg.246 ]

See also in sourсe #XX -- [ Pg.266 ]

See also in sourсe #XX -- [ Pg.526 ]

See also in sourсe #XX -- [ Pg.574 , Pg.574 , Pg.575 , Pg.643 ]

See also in sourсe #XX -- [ Pg.705 ]

See also in sourсe #XX -- [ Pg.147 ]

See also in sourсe #XX -- [ Pg.439 ]

See also in sourсe #XX -- [ Pg.243 , Pg.244 ]

See also in sourсe #XX -- [ Pg.72 ]

See also in sourсe #XX -- [ Pg.286 ]

See also in sourсe #XX -- [ Pg.250 , Pg.253 , Pg.254 , Pg.255 , Pg.256 , Pg.257 , Pg.258 , Pg.259 ]

See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.178 ]

See also in sourсe #XX -- [ Pg.1163 , Pg.1163 , Pg.1164 ]

See also in sourсe #XX -- [ Pg.277 ]

See also in sourсe #XX -- [ Pg.165 , Pg.227 , Pg.235 , Pg.282 , Pg.287 ]

See also in sourсe #XX -- [ Pg.414 , Pg.415 , Pg.416 , Pg.417 ]




SEARCH



B- Energy-Transfer Dyes for DNA Sequencing

B-DNA conformation

B-DNA crystal structures

B-DNA decamer

B-DNA helix

B-DNA structures)

B-DNA, double helix

B-Z DNA transition

B-Z transition in DNA

B-form of DNA

DNA B-form

DNA, forms B form

DNA-virus hepatitis B type

Duplex B DNA

Ribbon model of double-stranded B-DNA

Structure of B-DNA

The B Form of DNA

© 2024 chempedia.info