Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azulenes charge transfer complexes

The TCT method of obtaining relative molecular electron affinities and gas phase acidities has a demonstrated precision of 0.05 to 0.10 eV in the midrange of values from 0.5 eV to 3.0 eV. At the extremes the precision is less, 0.2 eV. Most of the TCT Ea are ground-state electron affinities. The exceptions are the HPMS electron affinities determined for azulene, anthracene, QJv, and CS2, and the ICR value for fluoroanil. The TCT method has been applied to more than 200 molecules. About 30 have been determined by the HPMS and ICR methods and many have been confirmed by the ECD method. Many have also been confirmed by the half-wave reduction potential method and/or solution charge transfer complex spectra. These will be discussed in Chapter 10. The colli-sional ionization method of measuring relative electron affinities can produce inverted orders of intensities and give excited-state Ea rather than ground-state Ea. [Pg.120]

Fewer than 300 Ea for organic molecules have been determined in the gas phase. The majority of the Ea have been determined by the ECD and/or TCT methods. The direct capture magnetron, AMB, photon, and collisional ionization methods have produced fewer than 40 values. Only the Ea of p-benzoquinone, nitrobenzene, nitromethane, azulene, tetracene, and perylene have been determined by three or more methods. Excited-state Ea have been obtained by each of these methods. Half-wave reduction potentials have determined the electron affinities of 50 aromatic hydrocarbons. The electron affinities of another 50 organic compounds have been determined from half-wave reduction potentials and the energies of charge transfer complexes. It is a manageable task to evaluate these 300 to 400 Ea. [Pg.234]

There are general reviews on heterocyclic syntheses by cycloaddition reactions of isocyanates and on the use of heterocyclic cations in preparative organic chemistry. More specific topics are 5-hydroxymethylfuran-2-carb-aldehyde, isobenzofurans and related ort/io-quinonoid systems, the conversion of 2//-cyclohepta[Zj] furan-2-one (1) into derivatives of azulene, the synthesis of indoles from o-alkylphenyl isocyanides, and abnormal Fischer indolization reactions of o-methoxyphenylhydrazones. Two reviews on isoindoles have appeared and a lecture on highly conducting charge-transfer complexes that are based on heterocyclic selenium and tellurium donors has been reprinted.Recent advances in the chemistry of imidazole and in the use of nitro-imidazoles as radiosensitizers have been summarized. There have been reviews on benzimidazole A -oxides and on dihydrobenzimidazoles, benzimidazolones, benzimidazolethiones, and related compounds. Other topics are synthetic applications of 1,3-dithiolium and 1,3-oxathiolium salts and of isoxazoles, the chemistry of benzisoxazoles, 2-amino-oxazoles, 5-oxazolones (2), furoxans, benzofuroxans, and related systems, the synthesis of five-membered meso-ionic compounds, and tetrazoles. ... [Pg.202]

Rationalize the observation that the first absorption band of the naphthalene— tetracyanoethylene (TCNE) charge-transfer complex is at 550 nm, but the first absorption of the azulene-TCNE complex is at 686 nm. [Pg.249]

Complexes. Azulenes readily form charge-transfer such agents as 1,3,5-trinitrobenzene, picric acid or... [Pg.192]


See other pages where Azulenes charge transfer complexes is mentioned: [Pg.437]    [Pg.168]    [Pg.15]   


SEARCH



Azulene

Azulenes

Charge-transfer complexities

Complex charge

Complex charge-transfer

© 2024 chempedia.info