Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azomethine ylides reactions

In a similar approach, Garner et al. (78) made use of silicon-based tethers between ylide and dipolarophile during their program of research into the application of azomethine ylides in the total asymmetric synthesis of complex natural products. In order to form advanced synthetic intermediates of type 248 during the asymmetric synthesis of bioxalomycins (249), an intramolecular azomethine ylide reaction from aziridine ylide precursors was deemed the best strategy (Scheme 3.84). Under photochemically induced ylide formation and subsequent cycloaddition, the desired endo-re products 250 were formed exclusively. However, due to unacceptably low synthetic yields, this approach was abandoned in favor of a longer tether (Scheme 3.85). [Pg.223]

A -Cyano- and A -(p-toluenesulfonyl)-A -(trimethylsilylmethyl)-5-methylisothio-ureas 269a and 269b have also been utilized as synthetic equivalents of azomethine ylides. ° Reaction of 269a and 269b with aromatic aldehydes and aryl ketones, in the presence of CsF, gives 2-iminooxazolines 270a-e in modest-to-good yield. These 2-iminooxazolines apparently are stable to isolation and do not isomerize to 2-aminooxazolines (Scheme 8.76). [Pg.410]

Aroylaziridines (32) and aromatic aldehydes react to give oxazolidines (33), the stereochemistry of which suggests reaction very largely through the trans-azomethine ylide, irrespective of the aziridine configuration (70JCS(C)2383). [Pg.54]

For the reactions of other 1,3-dipoles, the catalyst-induced control of the enantio-selectivity is achieved by other principles. Both for the metal-catalyzed reactions of azomethine ylides, carbonyl ylides and nitrile oxides the catalyst is crucial for the in situ formation of the 1,3-dipole from a precursor. After formation the 1,3-di-pole is coordinated to the catalyst because of a favored chelation and/or stabiliza-... [Pg.215]

For azomethine ylides and carbonyl ylides, the diastereoselectivity is more complex as the presence of an additional chiral center in the product allows for the formation of four diastereomers. Since the few reactions that are described in this chapter of these dipoles give rise to only one diastereomer, this topic will not be mentioned further here [10]. [Pg.217]

Cobalt, Manganese, and Silver Catalysts for Reactions of Azomethine Ylides... [Pg.240]

The first report on metal-catalyzed asymmetric azomethine ylide cycloaddition reactions appeared some years before this topic was described for other 1,3-dipolar cycloaddition reactions [86]. However, since then the activity in this area has been very limited in spite of the fact that azomethine ylides are often stabilized by metal salts as shown in Scheme 6.40. [Pg.240]

Although the first metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction involved azomethine ylides, there has not been any significant activity in this area since then. The reactions that were described implied one of more equivalents of the chiral catalyst, and further development into a catalytic version has not been reported. [Pg.245]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

The "one-pot domino reaction" of A/-benzylaniline with benzaldehyde in refluxing toluene results in a mixture of oxazolidines via a transient azomethine ylide (Scheme 14) <96S367>. The 2-benzoyloxazolidine 69 rearranges spontaneously to the oxazine 70 <96JHC1271>. The ring-closure of derivatives 71 (R = H or Me) of (f )-phenylglycinol to oxazolidin-2-ones... [Pg.214]

It is well known that azomethine ylides, which are usually formed in situ, are very good substrates for 1,3-dipolar cycloadditions. The group of Novikov and Khlebnikov [328] generated such a 1,3-dipol by reaction of difluorocarbene formed from CBr2F2 (2-626) with the imine 2-627. Cycloaddition of the obtained 2-629 with an ac-... [Pg.144]

Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

Dipolar cycloaddition reaction of azomethine ylides to alkynes or alkenes followed by oxidation is one of the standard methods for the preparation of pyrroles.54 Recently, this strategy has been used for the preparation of pyrroles with CF3 or Me3Si groups at the (3-positions.55 Addition of azomethine ylides to nitroalkenes followed by elimination of HN02 with base gives pyrroles in 96% yield (Eq. 10.48).56... [Pg.338]

Tominaga and coworkers have reported the formation of indolizine by the reaction of azomethine ylide with l-nitro-2-phenylthioethylene (Eq. 10.86).146... [Pg.357]

Dipolar cycloaddition reaction of benzo(A)thiophene-l,1-dioxide 282 with nonstabilized azomethine ylides gave high overall yield of new pyrrolo derivatives 5 and 6 with low stereoselectivity (Scheme 50) <2006TL5139>. [Pg.671]

It is well known that the use of a synthetic equivalent of azomethine ylide, the thiazolium ylide, a known synthon for the simple azomethine dipole, undergoes cycloadditions with higher regioselectivity than the parent ylide <1994JOC4304, 1994JOC2773>. In order to control the enantioselectivity of the reaction, an Evans oxazolidionone was incorporated into the acrylate dipolarophile as in Scheme 71. The cycloaddition was carried out by reaction of 4 equiv of the acrylate with the thiazolium salt to afford the diastereomeric tricyclic adduct 27 (Scheme 71) <2002BMC3509>. [Pg.680]

The three-component reaction between isatin 432a, a-aminoacids 433 (proline and thioproline) and dipolarophiles in methanol/water medium was carried out by heating at 90 °C to afford the pyrrolidine-2-spiro-3 -(2-oxindoles) 51. The first step of the reaction is the formation of oxazlidinones 448. Loss of carbon dioxide from oxazolidinone proceeds via a stereospecific 1,3-cycloreversion to produce the formation of oxazolidinones almost exclusively with /razw-stereoselectivity. This /f-azomethine ylide undergo 1,3-dipolar cycloaddition with dipolarophiles to yield the pyrrohdinc-2-r/ V -3-(2-oxindolcs) 51. (Scheme 101) <2004EJ0413>. [Pg.697]

An intramolecular azomethine ylide-mediated cyclization has been used to access the core 5 6 5 angular tricyclic structure of martinellic acid by Snider (Equation 113) <20010L4217>. Reaction of IV-benzylglycine 420 with the aldehyde 419 led to intramolecular cyclization, giving 421 in good yield. [Pg.757]


See other pages where Azomethine ylides reactions is mentioned: [Pg.133]    [Pg.146]    [Pg.53]    [Pg.53]    [Pg.55]    [Pg.91]    [Pg.531]    [Pg.213]    [Pg.213]    [Pg.241]    [Pg.296]    [Pg.328]    [Pg.329]    [Pg.27]    [Pg.87]    [Pg.73]    [Pg.196]    [Pg.53]    [Pg.55]    [Pg.1150]    [Pg.259]    [Pg.89]    [Pg.300]    [Pg.301]    [Pg.410]    [Pg.151]    [Pg.671]    [Pg.801]    [Pg.809]   
See also in sourсe #XX -- [ Pg.275 , Pg.277 ]




SEARCH



Asymmetric reactions azomethine ylides

Azomethine ylides 1,3-dipolar cycloaddition reactions

Azomethine ylides catalytic reactions

Azomethine ylides metal-mediated reaction

Azomethine ylides reactions with benzaldehyde

Azomethine ylides tandem Michael-cyclization reactions

Azomethines reactions

Benzaldehydes reaction with azomethine ylides

Cycloaddition reactions azomethine ylides

Ethylene, 1 -nitro-2- reaction with azomethine ylides

Intramolecular dipolar cycloaddition reactions of azomethine ylides

Nucleophile reactions azomethine ylide generation

Reactions of Azomethine Ylides

Reactions of Azomethine Ylides Derived from Aldimines

Reactions of Azomethine Ylides Derived from Aziridines

Reactions of Chiral Azomethine Ylides

Ylide reaction

Ylides reaction

© 2024 chempedia.info