Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azodicarboxylic acid azodicarboxylate

The photocycloaddition of arylazirines with a variety of multiple bonds proceeds in high yield and provides a convenient route for the synthesis of five-membered heterocyclic rings. Some of the dipolarophiles include azodicarboxylates, acid chlorides, vinylphosphonium salts and p-quinones. [Pg.56]

The Mitsunobu reaction is usually used to introduce an ester with inversion of configuration. The use of this methodology on an anomeric hydroxyl was found to give only the /3-benzoate, whereas other methods gave mixtures of anomers. Improved yields are obtained in the Mitsunobu esterification when p-nitrobenzoic acid is used as the nucleophile/ Bis(dimethylamino) azodicarboxylate as an activating agent was... [Pg.174]

To prepare fervenulin 4-oxides 12 or toxoflavine 4-oxides 146, it is convenient to use the reaction of l,3-dimethyl-2,4-dioxopyrimidin-6-yl hydrazone 147 or N-(3-methyl-2,4-dioxopyiimidin-6-yl) iV-methylhydrazone 148 with potassium nitrate in acetic acid [75CPB1885,76CPB338,76JCS(CC)658,82JHC1309,93CPB362]. Diethyl azodicarboxylate can be used instead of potassium nitrate [76JCS(P1 )713]. [Pg.295]

In an initial step triphenylphosphine adds to diethyl azodicarboxylate 5 to give the zwitterionic adduct 6, which is protonated by the carboxylic acid 2 to give intermediate salt 7. The alcohol reacts with 7 to the alkoxyphosphonium salt 8 and the hydrazine derivative 9, and is thus activated for a SN2-reaction ... [Pg.204]

Preparation of 7-(N,N -Dicarbobenzyloxyhydrazino)-6-Demethyttetracydine A 1.0 g portion of O-demethyltetracycline was dissolved in a mixture of 9.6 ml of tetrahydrofuran and 10.4 ml of methanesulfonic acid at -10°C. The mixture was allowed to warm to 0°C. A solution of 0.86 g of dibenzyl azodicarboxylate in 0.5 ml of tetrahydrofuran was added dropwise and the mixture was stirred for 2 hours while the temperature was maintained at 0°C. The reaction mixture was added to ether. The product was filtered off, washed with ether and then dried. The 7-(N,N -dicarbobenzyloxyhydrazino)-6-demethyltetracycline was identified by paper chromatography. [Pg.1030]

The Mitsunobu reaction was also applied to the synthesis of [ 1,2,4]triaz-ino[4,5-n]indoles (84AG517). Thus, reaction of the 2-acylindoles 127 with sodium borohydride in methanol or with lithium aluminium hydride in tetrahydrofuran gave the corresponding alcohols 128. Their cyclization with diethyl azodicarboxylate in the presence of triphenyl-phosphine gave the triazinoindoles 129. Acid treatment of the latter afforded 130 (Scheme 30). [Pg.55]

Treatment of 6-arylidenehydrazino-3-alkyl-5-nitrouracils 510 with etha-nolic KOH caused a benzylic acid type of rearrangement to give 511, which were alkylated to give 512, whose cyclization with diethyl azodicar-boxylate gave (80H1295) 513 by intramolecular cycloaddition through valence isomerization and then aromatization with diethyl azodicarboxylate (Scheme 107). [Pg.101]

Cydization of P-hydroxy-a-amino esters under Mitsunobu reaction conditions is an alternative approach to aziridine-2-carboxylic esters [6b, 13-16], In this case the P-hydroxy group is activated by a phosphorus reagent. Treatment of Boc-a-Me-D-Ser-OMe 13 (Scheme 3.5) with triphenylphosphine and diethyl azodicarboxylate (DEAD), for example, gave a-methyl aziridinecarboxylic acid methyl ester 14 in 85% yield [15]. In addition to PPh3/DEAD [13b, 15], several other reagent combi-... [Pg.75]

In an indirect amination process, acyl halides are converted to amino acids. Reaction of the acyl halide with a chiral oxazolidinone leads to a chiral amide, which reacts with the N=N unit of a dialkyl azodicarboxylate [R"02C—N=N—CO2R ]. Hydrolysis and catalytic hydrogenation leads to an amino acid with good enantioselectivity. ... [Pg.782]

Reduction by diimide can be advantageous when compounds contain functional groups that would be reduced by other methods or when they are unstable to hydrogenation catalysts. There are several methods for generation of diimide and they are illustrated in Scheme 5.4. The method in Entry 1 is probably the one used most frequently in synthetic work and involves the generation and spontaneous decarboxylation of azodicarboxylic acid. Entry 2, which illustrates another convenient method, thermal decomposition of p-toluenesulfonylhydrazide, is interesting in that it... [Pg.388]

Acyclic ADC compounds, which are more correctly named as derivatives of diazene, are generally prepared from hydrazine derivatives. For example, diethyl azodicarboxylate (Chemical Abstracts name diethyl diazene-1,2-dicarboxylate)5 is prepared from hydrazine by treatment with ethyl chloro-formate followed by oxidation with chlorine in benzene-water.6 Other oxidants which have been used include JV-bromosuccinimide,7 nitric acid,8 inorganic nitrates,9 potassium dichromate,10 silver carbonate on celite,11 and phenyl iodosotrifluoroacetate.12 The hydrazine derivative may also be... [Pg.2]

The reactivity of compound 113 toward reactive linear and cyclic dienophiles was reported in a study directed to find a model systems for the proposed [4+2] cycloaddition in the biosynthesis of the natural products brevianamides, paraherquamides, and marcfortines. With DMAD and diethyl azodicarboxylate the formation of 114 and 115 was almost quantitative after 48 h at 80 °C (Cbz = Carbobenzyloxygroup). When relatively unreactive dienophiles such as cyclopentene and cyclohexene were used, harsh reaction conditions and/or a Lewis acid catalyst are necessary for the formation of 116a and 116b (Scheme 16). In contrast, the analogous intramolecular reaction carried out on compound 117 takes place within a few hours at room temperature, even in the absence of a Lewis acid catalyst, to give 118 in 42% yield (Scheme 16) <2000T6345>. [Pg.512]

Wang resin was purchased from Advanced ChemTech (1% DVB, 0.70mmol/g substitution, 100-200 mash, Cat. SA5009). Anhydrous tetrahydrofuran (THF), A/A-dimcthyl-formamide (DMF), methanol, dichloromethane, pyridine, 1,1 -carbonyldiimidazole (CDI), piperazine, homopiperazine, trans-1,4-diaminocyclohexane, 4-(dimethylamino)pyridine (DMAP), succinic anhydride, diglycolic anhydride, 3-methyl-glutaric anhydride, 2-aminophenol, 2-amino-p-cresol, 2-amino-4-tert-butyl phenol, /V-methylmorpholine (NMM), triphenylphosphine, diethyl azodicarboxylate (DEAD), and trifluoroacetic acid (TFA) were purchased from Aldrich Chemical Company, Inc. and used without further purification. PyBOP was purchased from Novabiochem. [Pg.80]

The reaction of azodicarboxylic acid derivatives with tetramethoxylallene (59) affords diazetidines [59a]. [Pg.748]

Attack on Nitrogen. A variety of cyclic derivatives of phosphorous acid have been converted into spirophosphoranes (51), using diethyl azodicarboxylate as the condensing agent,42 probably by initial addition to nitrogen to give (50). Several... [Pg.91]

A one-pot procedure for the conversion of alcohols into alkylamines is by treatment of the former with hydrazoic acid in the presence of triphenylphosphine and diisopropyl azodicarboxylate addition of triphenylphosphine to the resulting azide gives an hninophosphorane, which is hydrolysed to the alkylamine by water (equation 8)35. [Pg.538]

Electron-rich aromatic compounds, such as phenol, anisole and A,./V-dimethylaniline, add to bis(2-trichloroethyl) azodicarboxylate under the influence of lithium perchlorate, boron trifluoride etherate or zinc chloride to yield para-substituted products 74, which are transformed into the anilines 75 by means of zinc and acetic acid86. Triflic acid (trifluoromethanesulphonic acid) catalyses the reactions of phenyl azide with benzene, toluene, chlorobenzene and naphthalene, to give TV-arylanilines (equation 34)87. [Pg.550]

The cycloadducts 257 of esters of azodicarboxylic acid to 2,7-dimethyloxepin undergo a spontaneous Claisen rearrangement to form the dihydrocyclopropapyridazines 258 (equation 139)132. Homofulvenes 259 (R1, R2 = HorMe) react with dimethyl azodicarboxylate to form rearranged adducts 260 (equation 140)133. [Pg.530]

Since diimide exists as a transient intermediate and cannot be isolated under normal conditions, procedures for reduction by diimide necessarily involve generation of the reagent in situ1 1 11. Diimide can be generated by (i) oxidation of hydrazine, (ii) acid decomposition of azodicarboxylate salts and (iii) thermal or base-catalyzed decomposition of substituted benzenesulfonyl hydrazides. [Pg.1001]

In a 1-1., three-necked, round-bottomed flask equipped with a constant-pressure dropping funnel, a mechanical stirrer, and a reflux condenser is placed 174 g. (1.0 mole) of ethyl azodicarbox-ylate in 150 ml. of ether. Freshly prepared cyclopentadiene (70 g., 1.06 moles) is added dropwise over a 1-hour period to the stirred ethereal solution of diethyl azodicarboxylate. During the addition a gentle reflux is maintained by external cooling with an ice-water bath as needed. When the addition is complete, the reaction mixture is allowed to stand for 4 hours, or less if the yellow color of the azodicarboxylic acid ester disappears. I he dropping funnel and condenser are replaced by a glass stoj)pcr and a short distillation head, respectively. The ether and unreactcd diene are distilled off on a steam bath and the... [Pg.83]

Diimide diimine, diazene), N2H2 or HN=NH, is an ephemeral species which results from decomposition with acids of potassium azodicarboxylate [264, 265] from thermal decomposition of anthracene-9,10-diimine [266, 267], and of hydrazine [268,269] and its derivatives [270]. Although this species has not been isolated, its transient existence has been proven by mass spectroscopy and by its reactions in which it hydrogenates organic compounds with concomitant evolution of nitrogen [271]. [Pg.33]

THF, -78 °C) gave a 10 1 mixture of (+)-230 to (+)-229. Column chromatography (silica gel) afforded pure (+)-230 in 82 % yield. Treatment of (+)-230 with diethyl azodicarboxylate/triphenylphosphine/benzoic acid, followed by saponification (MeOH, MeONa), yielded (+)-229 in 85 % yield . The enantiomeric forms (-)-229 and (-)-230 can be derived in a similar way from Our approach is, in... [Pg.229]

Often, the use of expensive O-substituted hydroxylamines and the azodicarboxylates could be avoided by direct hydroxaminolysis of protected amino acid esters 151 with hydroxylamine itself, followed by in situ acylation and finally substitution of Ph3P/CCl4/ EtsN for PhsP/DEAD during the cyclization step from 152 to 153 (Scheme 70) . [Pg.201]


See other pages where Azodicarboxylic acid azodicarboxylate is mentioned: [Pg.277]    [Pg.35]    [Pg.38]    [Pg.50]    [Pg.268]    [Pg.259]    [Pg.259]    [Pg.76]    [Pg.486]    [Pg.502]    [Pg.514]    [Pg.14]    [Pg.130]    [Pg.801]    [Pg.268]    [Pg.92]    [Pg.158]    [Pg.82]    [Pg.336]    [Pg.122]    [Pg.154]    [Pg.85]    [Pg.95]    [Pg.60]    [Pg.465]   


SEARCH



Azodicarboxylate

Azodicarboxylates

© 2024 chempedia.info