Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aziridine sulfur ylide

Ring expansion of activated aziridines (43) with sulfur ylides also provides a synthesis of azetidines (75JOC2990, 58BSF345, 81CC417). The highly reactive sulfonium methylide (44 R = R = H) undergoes further reaction with the azetidines (46), but the reaction is satisfactory for substituted methylides. The less reactive sulfoxonium methylide (45 R = R = H)... [Pg.244]

The Corey-Chaykovsky reaction entails the reaction of a sulfur ylide, either dimethylsulfoxonium methylide (1, Corey s ylide, sometimes known as DMSY) or dimethylsulfonium methylide (2), with electrophile 3 such as carbonyl, olefin, imine, or thiocarbonyl, to offer 4 as the corresponding epoxide, cyclopropane, aziridine, or thiirane. ... [Pg.2]

In the initial report by Corey and Chaykovsky, dimethylsulfonium methylide (2) reacted smoothly with benzalaniline to provide an entry to 1,2-diphenylaziridine 67. Franzen and Driesen reported the same reaction with 81% yield for 67. In another example, benzylidene-phenylamine reacted with 2 to produce l-(p-methoxyphenyl)-2-phenylaziridine in 71% yield. The same reaction was also carried out using phase-transfer catalysis conditions.Thus aziridine 68 could be generated consistently in good yield (80-94%). Recently, more complex sulfur ylides have been employed to make more functionalized aziridines, as depicted by the reaction between A -sulfonylimine 69 with diphenylsulfonium 3-(trimethylsilyl)propargylide (70) to afford aziridine 71, along with desilylated aziridine 72. ... [Pg.9]

Catalytic asymmetric epoxidation and aziridination mediated by sulfur ylides 98SL329. [Pg.242]

Aziridination remains less well developed than epoxidation. Nevertheless, high selectivity in inline aziridination has been achieved through the use of chiral sulfi-nimines as auxiliaries. Highly successful catalytic asymmetric aziridination reactions employing either sulfur ylides or diazo esters and chiral Lewis acids have been developed, although their scope and potential applications in synthesis have yet to be established. [Pg.36]

It is well known that aziridination with allylic ylides is difficult, due to the low reactivity of imines - relative to carbonyl compounds - towards ylide attack, although imines do react with highly reactive sulfur ylides such as Me2S+-CH2-. Dai and coworkers found aziridination with allylic ylides to be possible when the activated imines 22 were treated with allylic sulfonium salts 23 under phase-transfer conditions (Scheme 2.8) [15]. Although the stereoselectivities of the reaction were low, this was the first example of efficient preparation of vinylaziridines by an ylide route. Similar results were obtained with use of arsonium or telluronium salts [16]. The stereoselectivity of aziridination was improved by use of imines activated by a phosphinoyl group [17]. The same group also reported a catalytic sulfonium ylide-mediated aziridination to produce (2-phenylvinyl)aziridines, by treatment of arylsulfonylimines with cinnamyl bromide in the presence of solid K2C03 and catalytic dimethyl sulfide in MeCN [18]. Recently, the synthesis of 3-alkyl-2-vinyl-aziridines by extension of Dai s work was reported [19]. [Pg.41]

Several reviews on the synthesis of aziridines have been published in the previous year. These publications include a review on the silver catalyzed addition of nitrenes (among other intermediates such as carbene) across a double bond <06EJOC4313> a review on sulfur ylide addition to imines to form aziridines <06SL181> a review on nitrogen addition across double bonds <06ACR194> a general review on functionalization of a,p-unsaturated esters with some discussion of aziridination <06TA1465>... [Pg.80]

The intramolecular addition of sulfur ylides to imines (e.g. 72) has proven to be an excellent route to fused-ring aziridines (e.g. 73) <06AG(I)7066>. The addition of a sulfonamide to a vinylsulfonium salt leads to the formation of the sulfur ylide 72. The ylide then undergoes an intramolecular addition to form the product fused-ring aziridine 73. This method has also been used for the synthesis of fused-ring epoxides. [Pg.83]

A computational study has probed the origin of the diastereoselectivity in aziridine formation from sulfur ylides, Me2S+-CH -R, and imines.62 For semi-stabilized cases (R = Ph), betaine formation is non-reversible, so that selectivity is determined in the (g) initial addition step. In contrast, for stabilized ylides (R = C02Me), betaine formation is endothermic, and the elimination step becomes rate and selectivity determining. [Pg.10]

The required chiral sulfur ylide of type 59 is formed in a reaction with a diazo compound in the presence of an achiral metal catalyst. Subsequently, asymmetric reaction of the chiral ylide 59 with the C=N double bond of the imine proceeds diastereoselectively and enantioselectively, giving the optically active aziridine 57. The chiral sulfide catalyst released is then used for the next catalytic cycle. The cat-alytically active species in the asymmetric process is the sulfide, so this concept can also be regarded as an organocatalytic reaction. [Pg.119]

A major improvement addressing the issue of practicability and safety by avoidance of the direct use of (potentially) explosive diazo compounds was recently reported by Aggarwal and co-workers [82, 83], The direct addition of diazo compounds was replaced by use of suitable precursors which form the desired diazo compound in situ. The Aggarwal group developed this concept for the corresponding sulfur ylide type epoxidation (see Section 6.8) [82], and successfully extended it to aziridination [83]. Starting from the tosylhydrazone salt 66 the diazo compound is formed in situ under conditions (phase-transfer-catalysis at 40 °C) which were found to be compatible with the sulfur ylide type aziridination [82, 83], The concept of this improved method, for which sulfide 67 (Scheme 5.41) is the most efficient catalyst, is shown in Scheme 5.40. [Pg.123]

The reaction of sulfur ylides with carbonyl compounds such as ketones or the related imines leads to the corresponding epoxides or aziridines. [Pg.79]

In this chapter, we will review the use of ylides as enantioselective organocata-lysts. Three main types of asymmetric reaction have been achieved using ylides as catalysts, namely epoxidation, aziridination, and cyclopropanation. Each of these will be dealt with in turn. The use of an ylide to achieve these transformations involves the construction of a C-C bond, a three-membered ring, and two new adjacent stereocenters with control of absolute and relative stereochemistry in one step. These are potentially very efficient transformations in the synthetic chemist s arsenal, but they are also challenging ones to control, as we shall see. Sulfur ylides dominate in these types of transformations because they show the best combination of ylide stability [1] with leaving group ability [2] of the onium ion in the intermediate betaine. In addition, the use of nitrogen, selenium and tellurium ylides as catalysts will also be described. [Pg.357]

Scheme 10.15 Catalytic cycle for asymmetric aziridination via sulfur ylides. Scheme 10.15 Catalytic cycle for asymmetric aziridination via sulfur ylides.
In 2001, a modified procedure for sulfur ylide-catalyzed epoxidation, aziridination and cyclopropanation was introduced by Aggarwal and co-workers that utilized the generation of the diazo compounds in situ from tosyl hydrazone salts at 40 °C in the presence of a phase-transfer catalyst [46, 79]. (For experimental details see Chapter 14.12.1). Using this modified protocol, sulfide 4 was shown to be effective for epoxidation and aziridination (see Sections 10.2.1.4 and 10.3), but was not an effective cyclopropanation catalyst (see Table 10.3). Sulfide 28 was tried instead as it had been shown in achiral studies [96] that six-membered sulfides were more effective than five-membered analogues. This change gave rise to... [Pg.378]

A variation of the [C + C=N] pathway involves the addition of sulfur ylides to imines and this method has been effectively used to access a wide range of substituted aziridines under mild reaction conditions. Although high enantiomeric excesses can be achieved by using a chiral sulfur ylide (up to 98%), the m//rstepwise mechanism via a betaine intermediate . Sulfur ylides can be conveniently generated in situ from alkyl halides and chiral sulfides thus, benzyl bromide and tosyl imine in the presence of a camphor-derived chiral sulfide mediator provide aziridine 4 in practically quantitative yield as a 3 1 mixture of /Z-isomers and in 92% ee (A-isomer) (Scheme 8) <2001TL5451>. [Pg.656]

The first reaction of aminals with sulfur ylides to afford aziridines has been reported <070L2099>. The Ellman /er/-butylsulfinyl auxiliary group provided up to greater than 95 5 dr for trans and always greater than 95 5 dr for cis when allyl-, aryl-, and amide-stabilized ylides were employed. [Pg.64]

Preparation of aziridines using sulfur ylides and imines... [Pg.68]


See other pages where Aziridine sulfur ylide is mentioned: [Pg.2306]    [Pg.1175]    [Pg.2306]    [Pg.1175]    [Pg.25]    [Pg.30]    [Pg.30]    [Pg.35]    [Pg.479]    [Pg.83]    [Pg.808]    [Pg.339]    [Pg.339]    [Pg.300]    [Pg.119]    [Pg.119]    [Pg.119]    [Pg.120]    [Pg.120]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.125]    [Pg.125]    [Pg.370]    [Pg.371]    [Pg.376]    [Pg.386]    [Pg.551]    [Pg.68]   
See also in sourсe #XX -- [ Pg.855 ]

See also in sourсe #XX -- [ Pg.855 ]




SEARCH



Sulfur ylide

© 2024 chempedia.info