Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Autoxidation temperature

Autoxidation of hydrocarbons 317,318 Saturated hydrocarbons react relatively sluggishly with oxygen. For their autoxidation temperatures of 100-110° are required, also almost always catalysts must be added. Unbranched hydrocarbons give all the possible hydroperoxides in statistical proportions, since the various hydrocarbon groups have almost the same reactivity to oxygen. However, hydrogen on tertiary carbon atoms is preferentially replaced Criegee319 thus obtained decahydro-4a-naphthyl hydroperoxide from decalin ... [Pg.307]

Later, a completely different and more convenient synthesis of riboflavin and analogues was developed (34). It consists of the nitrosative cyclization of 6-(A/-D-ribityl-3,4-xyhdino)uracil (18), obtained from the condensation of A/-D-ribityl-3,4-xyhdine (11) and 6-chlorouracil (19), with excess sodium nitrite in acetic acid, or the cyclization of (18) with potassium nitrate in acetic in the presence of sulfuric acid, to give riboflavin-5-oxide (20) in high yield. Reduction with sodium dithionite gives (1). In another synthesis, 5-nitro-6-(A/-D-ribityl-3,4-xyhdino) uracil (21), prepared in situ from the condensation of 6-chloro-5-nitrouracil (22) with A/-D-ribityl-3,4-xyhdine (11), was hydrogenated over palladium on charcoal in acetic acid. The filtrate included 5-amino-6-(A/-D-ribityl-3,4-xyhdino)uracil (23) and was maintained at room temperature to precipitate (1) by autoxidation (35). These two pathways are suitable for the preparation of riboflavin analogues possessing several substituents (Fig. 4). [Pg.77]

Viscosity of drying oils also can be increased by passing air through the oil at relatively moderate temperatures, 140 to 150°C, to produce blown oils. Presumably, reactions similar to those involved in cross-linking cause autoxidative oligomeri2ation of the oil. [Pg.261]

Certain materials which are generally considered to be stable at ordinary temperatures can inflame even in tlie absence of normal ignition sources. Such spontaneous combustion results from exotliermic autoxidation when the heat liberated exceeds that dissipated by the system. Materials prone to self-heating are listed in Table 6.7. In most cases, such fires involve relatively large, enclosed or thermally-insulated masses, and spontaneous combustion usually occurs after prolonged storage. [Pg.185]

In the absence of bromide ion the p-xylene undergoes rapid autoxidation to p-toluic acid but oxidation of the second methyl group is difficult, due to deactivation by the electron-withdrawing carboxyl group, and proceeds only in low yield at elevated temperatures. Although bromide-free processes were subsequently developed (ref. 5) they require the use of much higher amounts of cobalt catalyst and have not achieved the same importance as the Amoco-MC process. Indeed, the... [Pg.278]

The effects of manganese on the cobalt/bromide-catalyzed autoxidation of alkylaromatics are summarized in Figure 17. The use of the Mn/Co/Br system allows for higher reaction temperatures and lower catalyst concentrations than the bromide-free processes. The only disavantage is the corrosive nature of the bromide-containing system which necessitates the use of titanium-lined reactors. [Pg.293]

Figure 1.7 Typical zero-order and corresponding second-derivative electronic absorption spectra of ethanol-reconstituted lipid/chloroform extracts of autoxidized model polyunsaturated fatty-acid compounds and inflammatory synovial fluid obtained after (1) reduction with NaBH4 and (2) dehydration with alcoholic H2S04- (a) Methyl linoleate subsequent to autoxidation in air at ambient temperature for a period of 72 h (—), or exposure to a Fenton reaction system containing EDTA (5.75 x 10 mol/dm ), H2O2 (1.14 X 10 mol/dm ) and Fe(ll) (5.75 x IO mol/dm ) as an aqueous suspension (—) (b) as (a) but with methyl linolenate (c) untreated rheumatoid knee-joint synovial fluid. Figure 1.7 Typical zero-order and corresponding second-derivative electronic absorption spectra of ethanol-reconstituted lipid/chloroform extracts of autoxidized model polyunsaturated fatty-acid compounds and inflammatory synovial fluid obtained after (1) reduction with NaBH4 and (2) dehydration with alcoholic H2S04- (a) Methyl linoleate subsequent to autoxidation in air at ambient temperature for a period of 72 h (—), or exposure to a Fenton reaction system containing EDTA (5.75 x 10 mol/dm ), H2O2 (1.14 X 10 mol/dm ) and Fe(ll) (5.75 x IO mol/dm ) as an aqueous suspension (—) (b) as (a) but with methyl linolenate (c) untreated rheumatoid knee-joint synovial fluid.
The formation of peroxides and formaldehyde in the high-purity polyoxyethylene surfactants in toiletries has been shown to lead to contact dermatitis [31], Peroxides in hydrogenated castor oil can cause autoxidation of miconazole [32], Oxidative decomposition of the polyoxyethylene chains occurs at elevated temperature, leading to the formation of ethylene glycol, which may then be oxidized to formaldehyde. When polyethylene glycol and poloxamer were used to prepare solid dispersions of bendroflumethiazide, a potent, lipophilic diuretic drug, the drug reacted with the formaldehyde to produce hydroflumethiazide [33],... [Pg.149]

Studies on the autoxidation of carotenoids in liposomal suspensions have also been performed since liposomes can mimic the environment of carotenoids in vivo. Kim et al. have studied the autoxidation of lycopene (Kim et al. 2001), -carotene (Kim 2004), and phytofluene (Kim et al. 2005) in liposomal suspensions and identified oxygenated cleavage compounds. The stability to oxidation at room temperature of various carotenoids has also been studied when incorporated in pig liver microsomes (Socaciu et al. 2000), and taking into account membrane dynamics. After 3 h of reaction, P-carotene and lycopene had completely degraded, whereas the xanthophylls tested were shown to be more stable. [Pg.218]

Aldehydes, and particularly aromatic ones, are highly susceptible to autoxidation thus benzaldehyde (97) is rapidly converted into benzoic acid (98) in air at room temperature. This reaction is catalysed by light and the usual radical initiators, but is also highly susceptible to the presence of traces of metal ions that can act as one-electron oxidising agents (cf. p. 306), e.g. Fe3 , Co3 , etc ... [Pg.330]

The alcohol was treated with 90% hydrogen peroxide and a trace of sulfuric acid at 0°C. While warming to ambient temperature overnight it exploded violently. Some 3,5-dihydroperoxide may have formed from autoxidation at the 5-position. See Alcohols, etc. also tert-Butanol, etc. both above, and 2-Methyl-1-pheny 1-2-propanol, etc., below... [Pg.1632]

In model studies involving Fe(n) species, three broad approaches have been used to mitigate the problem of autoxidation of the iron (Hay, 1984). These are (i) the use of low temperatures so that the rate of oxidation becomes very slow (ii) the synthesis of ligands containing steric barriers such that dimerization of the iron complex is inhibited, and (iii) immobilization of the iron complex on a solid surface such that dimerization once again will not be possible. [Pg.238]

Table 14.9 summarizes respective formulae for kq of optimal inhibitors as functions of T, [InH]0,/, and k3. At V = const, the kq value of optimal inhibitor decreases with increasing temperature. But during autoxidation, kq and T change unidirectionally. Such an inconsistency is due to an inverse relation between the efficiency of inhibitor and the temperature dependence of zyo. The temperature-dependent rate constant k3 may also contribute to this inconsistency, with the contribution depending on the ratio k3/( 1 + /)[InH]0. [Pg.510]

Iron(III)-catalyzed autoxidation of ascorbic acid has received considerably less attention than the comparable reactions with copper species. Anaerobic studies confirmed that Fe(III) can easily oxidize ascorbic acid to dehydroascorbic acid. Xu and Jordan reported two-stage kinetics for this system in the presence of an excess of the metal ion, and suggested the fast formation of iron(III) ascorbate complexes which undergo reversible electron transfer steps (21). However, Bansch and coworkers did not find spectral evidence for the formation of ascorbate complexes in excess ascorbic acid (22). On the basis of a combined pH, temperature and pressure dependence study these authors confirmed that the oxidation by Fe(H20)g+ proceeds via an outer-sphere mechanism, while the reaction with Fe(H20)50H2+ is substitution-controlled and follows an inner-sphere electron transfer path. To some extent, these results may contradict with the model proposed by Taqui Khan and Martell (6), because the oxidation by the metal ion may take place before the ternary oxygen complex is actually formed in Eq. (17). [Pg.408]

Copper complexes were used as efficient catalysts for selective autoxidations of flavonols (HFLA) to the corresponding o-benzoyl salicylic acid (o-BSH) and CO in non-aqueous solvents and at elevated temperatures (124-128). The oxidative cleavage of the pyrazone ring is also catalyzed by some cobalt complexes (129-131). [Pg.442]


See other pages where Autoxidation temperature is mentioned: [Pg.173]    [Pg.173]    [Pg.481]    [Pg.276]    [Pg.105]    [Pg.506]    [Pg.228]    [Pg.352]    [Pg.271]    [Pg.485]    [Pg.543]    [Pg.544]    [Pg.55]    [Pg.105]    [Pg.171]    [Pg.920]    [Pg.489]    [Pg.182]    [Pg.238]    [Pg.679]    [Pg.19]    [Pg.247]    [Pg.217]    [Pg.243]    [Pg.328]    [Pg.313]    [Pg.502]    [Pg.908]    [Pg.1675]    [Pg.1847]    [Pg.1947]    [Pg.500]    [Pg.397]    [Pg.478]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



© 2024 chempedia.info