Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Autoxidation of alkylaromatics

A question which inevitably arises on surveying the enormous sucess of the Amoco catalyst is why the combination Co/Mn/Br in acetic acid In order to answer this question we must first examine the mechanism of free radical chain autoxidations of alkylaromatics (ref. 4). [Pg.283]

The effects of manganese on the cobalt/bromide-catalyzed autoxidation of alkylaromatics are summarized in Figure 17. The use of the Mn/Co/Br system allows for higher reaction temperatures and lower catalyst concentrations than the bromide-free processes. The only disavantage is the corrosive nature of the bromide-containing system which necessitates the use of titanium-lined reactors. [Pg.293]

Autoxidation of alkylaromatic hydrocarbons has been studied exten-- sively in recent years (1, 2, 3,11,12 13), and the mechanism (Reactions 1-4) is now well understood. [Pg.382]

The materials showed some activity in the autoxidation of alkylaromatics such as ethylbenzene at 403 118 K, even though at these temperatures there is a considerable blank background reaction. The stability of a salicylidene imine under the conditions of high-temperature autoxidation is questionable in any event. [Pg.12]

Similarly, the CrAPO-5- and chromium silicalite-1 (CrS-l)-catalyzed oxidation of aromatic side-chains with TBHP or O2 as the primary oxidant [27-31] almost certainly arises as a result of soluble chromium(VI) leached from the catalyst. The same probably applies to benzylic oxidations with TBHP catalyzed by chromium-pillared montmorillonite [32]. More recently, a chromium Schiff s base complex tethered to the mesoporous silica, MCM-41, was claimed [33] to be an active and stable catalyst for the autoxidation of alkylaromatic side-chains. It would seem unlikely, however, that Schiff s base ligands can survive autoxidation conditions. Indeed, on the basis of our experience with chromium-substituted molecular sieves we consider it unlikely that a heterogeneous chromium catalyst can be developed that is both active and stable to leaching under normal oxidizing conditions with O2 or RO2H in the liquid phase. Similarly, vanadium-substituted molecular sieves are also unstable towards leaching under oxidizing conditions in the liquid phase [6,34]. [Pg.524]

A complete mechanism for the autoxidation of alkylaromatic hydrocarbons by cobalt(n) in acetic acid has not been established,25 6 although a complex rate law has been determined for tetralin. 22 The reaction most likely proceeds by a fiiee radical chain mechanism in which the purpose of the cobalt ions is to provide a hi h steady state concentration of free radicals by catalysis of the decomposition of THP. The free radical nature of the autoxidation of tettalin with the colloidal CoPy catalysts is supported by experiments which showed inhibition of the reaction by 2,6-di-rerr-butylphenol and 2,6-di-rm-butyl-4-methylphenol, and by a shortening of the induction period and increase of the reaction rate when azobis(isobut nitrile) was added to the reaction mixture as a free radical initiator. [Pg.163]

As noted earlier, the Amoco catalyst system has been applied to the autoxidation of a wide variety of, mainly methylaromatic, substrates (ref. 19). It has also been applied to the oxidation of other alkylaromatics, e.g. the oxidation of m-phenoxyethylbenzene to the pharmaceutical intermediate, m-phenoxyaceto-phenone (2). [Pg.294]

Zaidi (ref. 28) has reported the autoxidation of cyclohexane in acetic acid, at 60-80 °C and 1 bar, in the presence of a Co(OAc)2/NaBr catalyst (4). Adipic acid was obtained in 31% yield. Based on the results obtained in alkylaromatic oxidations it would be interesting to try the Co/Mn/Br /HOAc system in cyclohexane oxidation. It is, however, difficult to believe that this has not already been done. [Pg.300]

Emulsion oxidation of alkylaromatic compounds appeared to be more efficient for the production of hydroperoxides. The first paper devoted to emulsion oxidation of cumene appeared in 1950 [1], The kinetics of emulsion oxidation of cumene was intensely studied by Kucher et al. [2-16], Autoxidation of cumene in the bulk and emulsion occurs with an induction period and autoacceleration. The simple addition of water inhibits the reaction [6], However, the addition of an aqueous solution of Na2C03 or NaOH in combination with vigorous agitation of this system accelerates the oxidation process [1-17]. The addition of an aqueous phase accelerates the oxidation and withdrawal of water retards it [6]. The addition of surfactants such as salts of fatty acids accelerates the oxidation of cumene in emulsion [3], The higher the surfactant concentration the faster the cumene autoxidation in emulsion [17]. The rates of cumene emulsion oxidation after an induction period are given below (T = 353 K, [RH] [H20] = 2 3 (v/v), p02 = 98 kPa [17]). [Pg.436]

Emulsion oxidation of alkylaromatic compounds appeared to be more efficient for the production of hydroperoxides. The first paper devoted to emulsion oxidation of cumene appeared in 1950 [1]. The kinetics of emulsion oxidation of cumene was intensely studied by Kucher et al. [2-16]. Autoxidation of cumene in the bulk and emulsion occurs with an induction period and autoacceleration. The simple addition of water inhibits the reaction... [Pg.437]

In general, liquid phase autoxidations on hydrocarbons after the initial stages take place, may be considered as co-oxidations with aldehydes, alcohols, ketones, carboxylic acids, etc. Often aldehydes or ketones are deliberately added to hydrocarbon autoxidations in order to promote the reaction. For example, in the cobalt-catalyzed oxidations of alkylaromatics (see Section II.B.3.b), aldehydes, or methyl ethyl ketone are usually added in commercial processes in order to attain high rates and eliminate induction periods. [Pg.337]

For example, a series of alkylaromatics afforded the corresponding aralkyl ketones in high selectivities with TBHP in the presence of CrAPO-5 (3 m %) at 80 °C (Table 5). TBHP could be replaced by Oj but this required neutralization of Bronsted acid sites on the CrAPO-5, by ion-exchange, in order to avoid acid-catalyzed decomposition of the benzylic hydroperoxide to the eorresponding phenol, which inhibits the autoxidation. The addition of a small amount of TBHP to initiate the reaction also had a beneficial effect. [Pg.167]

In some cases metalloporphyrins have been found to catalyze the autoxidation of alkanes or the alkyl groups of other saturated hydrocarbons (alkylaromatics, cycloalkanes, etc.) [85]. Typically,... [Pg.90]

The aromatic core or framework of many aromatic compounds is relatively resistant to alkylperoxy radicals and inert under the usual autoxidation conditions (2). Consequentiy, even somewhat exotic aromatic acids are resistant to further oxidation this makes it possible to consider alkylaromatic LPO as a selective means of producing fine chemicals (206). Such products may include multifimctional aromatic acids, acids with fused rings, acids with rings linked by carbon—carbon bonds, or through ether, carbonyl, or other linkages (279—287). The products may even be phenoUc if the phenoUc hydroxyl is first esterified (288,289). [Pg.344]

As was noted by Jones (ref. 12) the success of a metal bromide as a catalyst for alkylaromatic autoxidations depends on the ability of the metal to transfer rapidly and efficiently oxidizing power from various autoxidation intermediates onto bromide ion in a manner which generates Br-. The fact that no free bromine is observable in this system is consistent with rapid reaction of intermediate bromine atoms with the substrate. Inhibition of the reaction by cupric salts can be explained by the rapid removal of Br2 or ArCH2- via one-electron oxidation by Cu (Fig. 10). [Pg.288]

The success of the metal bromide catalysts in alkylaromatic autoxidation resides mainly in their ability to transfer oxidizing power from the various oxidation intermediates to bromide ions to produce bromine radicals like Br and Br2" finally (see eqs. (7) - (10)) [16]. [Pg.452]

The determination of peroxides has two goals one is to monitor peroxide concentration used as initiator and catalysts and the other is to detect formation of hazardous peroxides formed as autoxidation products in ethers, acetals, dienes, and alkylaromatic hydrocarbons. A sample is dissolved in a mixture of acetic acid and chloroform. The solution is deaerated and potassium iodide reagent is added and let to react for 1 h in darkness. The iodine formed in reaction is measured by absorbance at 470 nm and result calculated to active oxygen in the sample. The method can determine hydroperoxides, peroxides, peresters, and ketone peroxides. Oxidizing and reducing agents interfere with flic determination. [Pg.1065]

The determination of peroxides has two goals one is to monitor peroxide concentration used as initiator and catalysts and flic other is to detect formation of hazardous peroxides formed as autoxidation products in ethers, acetals, dienes, and alkylaromatic hydrocarbons. A sample is dissolved in a mixture of acetic acid and chloroform. The solu-... [Pg.276]


See other pages where Autoxidation of alkylaromatics is mentioned: [Pg.135]    [Pg.379]    [Pg.137]    [Pg.135]    [Pg.379]    [Pg.137]    [Pg.136]   
See also in sourсe #XX -- [ Pg.500 , Pg.513 , Pg.514 ]




SEARCH



Alkylaromatics

© 2024 chempedia.info