Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Autophosphorylation of receptor

Fig. 8.6. Functions of autophosphorylation of receptor tyrosine kinases. Autophosphorylation of receptor tyrosine kinases takes place in trans, i.e., between neighboring protomers of the receptor. The catalytic domain of the receptor is shown as a shaded segment. As a consequence of autophosphorylation, the intrinsic tyrosine kinase activity of the receptor is stimulated. Effector proteins can also bind to the activated receptor. Binding takes place with specific phosphotyrosine binding domains (SH2 or PTB domains) at phosphotyrosine residues of the activated receptor. A critical factor for further signal transduction is the membrane association of the effector proteins that enter into binding with the activated receptor. Details of the effector proteins can be found as follows phospholipase Cy 5.6.2 Src kinase 8.3.2 pl20 GAP 9.4 Grb2, She, IRS 8.5 PI3-kinase 6.6.1 Syp tyrosine phosphatase 8.4. Fig. 8.6. Functions of autophosphorylation of receptor tyrosine kinases. Autophosphorylation of receptor tyrosine kinases takes place in trans, i.e., between neighboring protomers of the receptor. The catalytic domain of the receptor is shown as a shaded segment. As a consequence of autophosphorylation, the intrinsic tyrosine kinase activity of the receptor is stimulated. Effector proteins can also bind to the activated receptor. Binding takes place with specific phosphotyrosine binding domains (SH2 or PTB domains) at phosphotyrosine residues of the activated receptor. A critical factor for further signal transduction is the membrane association of the effector proteins that enter into binding with the activated receptor. Details of the effector proteins can be found as follows phospholipase Cy 5.6.2 Src kinase 8.3.2 pl20 GAP 9.4 Grb2, She, IRS 8.5 PI3-kinase 6.6.1 Syp tyrosine phosphatase 8.4.
Autophosphorylation of receptor tyrosine kinases has a double effect The tyrosine kinase activity undergoes autoactivation by phosphorylation of Tyr residues localized in or close to the active center (see 8.1.3). In addition, Tyr residues that lie outside the active center are phosphorylated. The phosphotyrosine residues thereby created serve as binding sites for effector molecules next in the sequence of the signal transduction pathway (see Fig. 8.6). [Pg.296]

Many extracellular stimuli are perceived by a cell through the receptor tyrosine kinases. Their cytoplasmic domains have kinase activity and phosphorylation motifs, which, after receptor activation, create sites for multiple components of the intracellular signalling network. Receptor activation is achieved by mutual intermolecular autophosphorylation of receptor subunits. This association is induced or stabilized in the receptor by ligand binding. [Pg.58]

Concanavalin A is a plant lectin from the jack bean (Canavalia ensiformis) which binds with high affinity to mannose residues of glycoproteins. Concanavalin A is known to stimulate the tyrosine kinase activity of the INSR (3-subunit with consecutive activation of kinases downstream the insulin receptor (IRS, PI 3-kinase). It is believed that Concanavalin A stimulates the activation and autophosphorylation of the INSR kinase through aggregation of the receptor, although the precise mechanism of action is unclear. [Pg.636]

All RTKs contain between one and three tyrosines in the kinase activation loop, which is composed of subdomains VII and VIII of the protein kinase catalytic core. Phosphorylation of these tyrosines has been shown to be critical for stimulation of catalytic activity and biological function for a number of RTKs, including insulin receptor, FGF receptor, VEGF receptor, PDGF receptor, Met (hepatocyte growth factor receptor), and TrkA (NGF receptor). A major exception is the EGF receptor, for which autophosphorylation of a conserved tyrosine in the activation loop does not seem to be involved in signaling. Substitution of tyrosine with phenylalanine has no effect on RTK activity or downstream signals. [Pg.136]

In principle, RTK autophosphorylation could occur in cis (within a receptor monomer) or in trans (between two receptors in a dimer). In the first case, ligand binding would cause a change in receptor conformation that would facilitate c/ s-autophosphorylation of tyrosine residues located within or outside the PTK domain. In the second case, no conformational change must occur upon dimerization. The simple proximity effect would provide sufficient opportunity for trans-phosphorylation of tyrosines in the cytoplasmic domain by a second RTK. [Pg.136]

Figure 11.2 Structure of the insulin receptor (a). Binding of insulin promotes autophosphorylation of the (3-subunits, where each (3-subunit phosphorylates the other (3-subunit. Phosphate groups are attached to three specific tyrosine residues (tyrosines 1158, 1162 and 1163), as indicated in (b). Activation of the (3-subunit s tyrosine kinase activity in turn results in the phosphorylation of various intracellular (protein) substrates which trigger the mitogen-activated protein kinase and/or the phosphoinositide (PI-3) kinase pathway responsible for inducing insulin s mitogenic and metabolic effects. The underlying molecular events occurring in these pathways are complex (e.g. refer to Combettes-Souverain, M. and Issad, T. 1998. Molecular basis of insulin action. Diabetes and Metabolism, 24, 477-489)... Figure 11.2 Structure of the insulin receptor (a). Binding of insulin promotes autophosphorylation of the (3-subunits, where each (3-subunit phosphorylates the other (3-subunit. Phosphate groups are attached to three specific tyrosine residues (tyrosines 1158, 1162 and 1163), as indicated in (b). Activation of the (3-subunit s tyrosine kinase activity in turn results in the phosphorylation of various intracellular (protein) substrates which trigger the mitogen-activated protein kinase and/or the phosphoinositide (PI-3) kinase pathway responsible for inducing insulin s mitogenic and metabolic effects. The underlying molecular events occurring in these pathways are complex (e.g. refer to Combettes-Souverain, M. and Issad, T. 1998. Molecular basis of insulin action. Diabetes and Metabolism, 24, 477-489)...
Most protein serine-threonine kinases undergo autophosphorylation. The autophosphorylation of most protein kinases is associated with an increase in kinase activity [4, 10]. In some instances, such as with the RII subunit of PKA, autophosphorylation represents a positive feedback mechanism for kinase activation, in this case by enhancing the rate of dissociation of the RII and C subunits. In the case of CaMKII, autophosphorylation causes the catalytic activity of the enzyme to become independent of Ca2+ and calmodulin. This means that the enzyme, activated originally in response to elevated cellular Ca2+, remains active after Ca2+ concentrations have returned to baseline. By this mechanism, neurotransmitters that activate CaMKII can produce relatively long-lived alterations in neuronal function. In other instances, such as with the receptor-associated protein tyrosine kinases (discussed in Ch. 24), autophosphorylation is an obligatory step in the sequence of molecular events through which those kinases are activated and produce physiological effects. [Pg.399]

An important question arises about the effects of phospholipid composition and the function of membrane-bound enzymes. The phospholipid composition and cholesterol content in cell membranes of cultured cells can be modified, either by supplementing the medium with specific lipids or by incubation with different types of liposomes. Direct effects of phospholipid structure have been observed on the activity of the Ca2+-ATPase (due to changes in the phosphorylation and nucleotide binding domains) [37]. Evidence of a relationship between lipid structure and membrane functions also comes from studies with the insulin receptor [38]. Lipid alteration had no influence on insulin binding, but modified the kinetics of receptor autophosphorylation. [Pg.100]

Typically of receptor tyrosine kinases, binding of insulin to the extracellular domains of the IR causes autophosphorylation of specific tyrosine residues within the intracellular region of the [3 units. Some RTKs, as described above and as illustrated by JAKs described above and also shown in Figure 4.20, would at this point recruit adaptor proteins to bind directly to the phosphorylated intracellular... [Pg.116]


See other pages where Autophosphorylation of receptor is mentioned: [Pg.66]    [Pg.908]    [Pg.67]    [Pg.66]    [Pg.908]    [Pg.67]    [Pg.843]    [Pg.844]    [Pg.974]    [Pg.1192]    [Pg.3]    [Pg.15]    [Pg.22]    [Pg.35]    [Pg.223]    [Pg.133]    [Pg.133]    [Pg.136]    [Pg.136]    [Pg.139]    [Pg.146]    [Pg.263]    [Pg.294]    [Pg.114]    [Pg.179]    [Pg.351]    [Pg.400]    [Pg.419]    [Pg.422]    [Pg.105]    [Pg.544]    [Pg.107]    [Pg.108]    [Pg.311]    [Pg.38]    [Pg.108]    [Pg.110]   
See also in sourсe #XX -- [ Pg.562 ]

See also in sourсe #XX -- [ Pg.562 ]

See also in sourсe #XX -- [ Pg.562 ]

See also in sourсe #XX -- [ Pg.562 ]




SEARCH



Autophosphorylating

Autophosphorylation

Receptor autophosphorylation

© 2024 chempedia.info