Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attenuated total reflection reaction

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

Since solid-state reactions can easily be monitored by continuous measurement of spectra, it is easy to study the mechanism of the reactions. For this purpose, IR spectroscopy is the most useful, because IR spectra can be measured simply as Nujol mulls or directly for any mixture of solid-solid, solid-liquid, or liquid-liquid by using the ATP (attenuated total reflection) method. Some such examples of the mechanistic study are described. [Pg.16]

Heinen M, Jusys Z, Behm RJ. 2009. Reaction pathways analysis and reaction intermediate detection via simultaneous differential electrochemical mass spectrometry (DBMS) and attenuated total reflection Bourier transform infrared spectroscopy (ATR-BTIRS). In Vielstich W, Gasteiger HA, Yokokawa H, eds. Handbook of Buel Cells. Volume 5 Advances in Electrocatalysis. Chichester John Wiley Sons, Ltd., in press. [Pg.457]

Many important heterogeneous catalytic reactions occur at the interface between a solid catalyst and liquid or liquid-gas reactants. Notwithstanding the importance of solid-catalyzed reactions in the presence of liquid reactants, relatively little attention has been paid to spectroscopic methods that allow researchers to follow the processes occurring at the solid-liquid interface during reaction. This lack can be explained in part by the fact that there are only a few techniques that give access to information about solid-liquid interfaces, the most prominent of them being attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray absorption fine structure (XAFS) spectroscopy. [Pg.228]

More significantly, when calorimetry is combined with an integral kinetic analysis method, e.g. a spectroscopic technique, we have an expanded and extremely sophisticated method for the characterisation of chemical reactions. And when the calorimetric method is linked to FTIR spectroscopy (in particular, attenuated total reflectance IR spectroscopy, IR-ATR), structural as well as kinetic and thermodynamic information becomes available for the investigation of organic reactions. We devote much of Chapter 8 to this new development, and the discussion will focus on reaction calorimeters of a size able to mimic production-scale reactors of the corresponding industrial processes. [Pg.11]

A general solution to both problems is the application of attenuated total reflectance (ATR) in combination with infrared spectroscopy. The theory of ATR spectroscopy is well described in several books and articles which also demonstrate the applicability of the Beer-Lambert law to ATR spectroscopy [9]. The combination of reaction calorimetry and ATR spectroscopy is now rather common [ 10-13] typically using commercially available calorimeters. [Pg.205]

Surface modification of polyvinyl chloride films, both plasticised and unplasticised, using amino thiophenol in dimethyl formamide and water mixtures, was examined using attenuated total reflection fourier transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy. Reaction kinetics, and the amount of dioctyl phthalate plasticiser leached out during the reaction were determined. Surface selectivity and degree of modification was found to depend on reaction time. 19 refs. [Pg.51]

It has been suggested that the first step of reaction (6) may be the formation of a carboxylic species COOHads. Carboxyl radicals have indeed been observed by Zhu et al." for potentials lower than 0.65 V using Fourier Transform infrared Reflectance Absorption Spectroscopy with the Attenuated Total Reflection mode (ATR-FTtR). Moreover Anderson et al." made numerical simulation which indicated that the formation of an adsorbed carboxylic species was energetically more favorable. Here, it has to be noted that the electro-oxidation of CO being a stracture sensitive reaction (sensitive to the superficial stracture symmehy" and to the presence of surface defects) this species can be used to study the activity of a catalyst but also as a molecular probe to characterize the catalytic surface. ... [Pg.406]

The fiber optic evanescent wave sensor (FO-EWS) belongs to a sensor in which the fiber core interacts with the analyte. This interaction occurs through the attenuated total reflection (ATR) and the evanescent wave excitation in a dielectric medium of smaller refractive index in the vicinity of fiber core. If the surrounding medium is fluorescent, then the fluorescence signal in the reaction region of evanescent wave field is excited and detected. This is illustrated in Figure 8.2. [Pg.186]


See other pages where Attenuated total reflection reaction is mentioned: [Pg.236]    [Pg.95]    [Pg.414]    [Pg.539]    [Pg.405]    [Pg.463]    [Pg.464]    [Pg.266]    [Pg.20]    [Pg.69]    [Pg.317]    [Pg.391]    [Pg.441]    [Pg.176]    [Pg.65]    [Pg.221]    [Pg.258]    [Pg.227]    [Pg.307]    [Pg.31]    [Pg.219]    [Pg.380]    [Pg.200]    [Pg.235]    [Pg.227]    [Pg.260]    [Pg.305]    [Pg.81]    [Pg.157]    [Pg.188]    [Pg.287]    [Pg.198]    [Pg.296]    [Pg.320]    [Pg.390]    [Pg.32]    [Pg.369]    [Pg.373]   
See also in sourсe #XX -- [ Pg.274 ]

See also in sourсe #XX -- [ Pg.274 ]




SEARCH



ATTENUATED TOTAL

Attenuated total reflectance

Attenuated total reflectance Attenuation

Attenuation total reflection

Attenuator attenuated total reflection

Reaction total

Reflection, attenuated total

Reflectivity total

Total reflection

© 2024 chempedia.info