Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atoms, Rutherford-Bohr model

An overview of a scientific subject must include at least two parts retrospect (history) and the present status. The present status (in a condensed form) is presented in Chapters 2 to 21. In this section of the overview we outline (sketch) from our subjective point of view the history of electrochemical deposition science. In Section 1.2 we show the relationship of electrochemical deposition to other sciences. In this section we show how the development of electrodeposition science was dependent on the development of physical sciences, especially physics and chemistry in general. It is interesting to note that the electron was discovered in 1897 by J. J. Thomson, and the Rutherford-Bohr model of the atom was formulated in 1911. [Pg.3]

For nearly half a century, Mendeleev s periodic table remained an empirical compilation of the relationship of the elements. Only after the first atomic model was developed by the physicists of the early twentieth century, which took form in Bohr s model, was it possible to reconcile the involved general concepts with the specificity of the chemical elements. Bohr indeed expanded Rutherford s model of the atom, which tried to connect the chemical specificity of the elements grouped in Mendeleev s table with the behavior of electrons spinning around the nucleus. Bohr hit upon the idea that Mendeleev s periodicity could... [Pg.31]

In 1913, the Danish physicist Niels Bohr (1885-1962) sees problems in Rutherford s model and refines it to suggest that electrons exist only in specific states. He uses Planck s constant, formulated by German physicist Max Planck, to explain the stability that these states confer on atoms. In 1919, Rutherford—now director of the Cavendish Lab at Cambridge—discovers the... [Pg.6]

In the early part of the twentieth century, then, a simple model of atomic structure became accepted, now known as the Rutherford nuclear model of the atom, or, subsequently, the Bohr-Rutherford model. This supposed that most of the mass of the atom is concentrated in the nucleus, which consists of protons (positively charged particles) and neutrons (electrically neutral particles, of approximately the same mass). The number of protons in the nucleus is called the atomic number, which essentially defines the nature of... [Pg.229]

Scientists of the nineteenth century lacked the concepts necessary to explain line spectra. Even in the first decade of the twentieth century, a suitable explanation proved elusive. This changed in 1913 when Niels Bohr, a Danish physicist and student of Rutherford, proposed a new model for the hydrogen atom. This model retained some of the features of Rutherford s model. More importantly, it was able to explain the line spectrum for hydrogen because it incorporated several new ideas about energy. As you can see in Figure 3.8, Bohr s atomic model pictures electrons in orbit around a central nucleus. Unlike Rutherford s model, however, in which electrons may move anywhere within the volume of space around the nucleus, Bohr s model imposes certain restrictions. [Pg.126]

Compare the Rutherford, Bohr, and quantum mechanical models of the atom. [Pg.159]

The Bohr model of the atom took shape in 1913. Niels Bohr (1885-1962), a Danish physicist, started with the classic Rutherford model and applied a new theory of quantum mechanics to develop a new model that is still in use, but with many enhancements. His assumptions are based on several aspects of quantum theory. One assumption is that light is emitted in tiny bunches (packets) of energy call photons (quanta of light energy). [Pg.13]

An estimate of die size of the proton and an understanding of the structure of the hydrogen atom resulted from two major developments in atomic physics the Rudierford scattering experiment (1911) and the Bohr model of die atom (1913). Rutherford showed that the nucleus is vanishingly small compared to the size of an atom. The radius of a proton is on the order of 10-13 centimeter as compared with atomic radii of 10-3 centimeter, Thus, the size of a hydrogen atom is determined by the radius of the electron orbits, but the mass is essentially that of the proton,... [Pg.1378]

The 3rd Solvay Conference in Physics took place in 1921, after a long interruption due to the First World War. Its theme was Atoms and Electrons. 20 It was centered on the Rutherford model of the atom and Niels Bohr s atomic theory. Bohr, however, was not able to attend the conference because of illness. [Pg.14]

Students will demonstrate an understanding of the five basic atomic theories—the Dalton atom, the Thomson atom, the Rutherford atom, the Bohr atom, and the Schrodinger electron cloud model—and illustrate this understanding in a two-dimensional work of art. [Pg.26]

Rutherford s model stated that positively charged protons were found in the center of the atom, the nucleus. Negatively charged electrons were found around the nucleus. However, it did not indicate how electrons were arranged outside of the nucleus of an atom. In his theory, Bohr examined the movement of electrons. [Pg.11]

The nuclear concentration of mass anticipated Rutherford s model of the atom, and Bohr s planetary model by a decade. The spectral integers, linked to a standing-wave pattern, predates de Broglie s proposal by two decades. [Pg.40]

Niels Bohr incorporated Planck s quantum concept into Rutherford s model of the atom in 1913 to explain the discrete frequencies of radiation emitted and absorbed by atoms with one electron (H, He+, and Li2+). This electron is attracted to the positive nucleus and is closest to the nucleus at the ground state of the atom. When the electron absorbs energy, it moves into an orbit further from the nucleus and the atom is said to be in an electronically excited state. If sufficient energy is absorbed, the electron separates from the nucleus entirely, and the atom is ionized ... [Pg.58]

Just as the Rutherford model of the atom developed in 1911 was scientifically startling with its revelation of the atom as mostly empty space, so was the Bohr model of the atom introduced in 1913 with its definition of the location of the electron within the atom. As Bohr and others realized that the atomic spectrum of each element is caused by electrons changing energy levels, a different picture of the atom emerged. The new picture of the atom had electrons at various energy levels within the empty space of Rutherford s model (Figure 8.6). This space can still be said to be empty because the mass of the electrons is extraordinarily small in comparison with that of the whole atom. [Pg.108]

The Rutherford model of the atom, in turn, was replaced only two years later by a model developed by Niels Bohr, a Danish physicist. The Bohr model, which is shown in Figure 16, describes electrons in terms of their energy levels. [Pg.108]

Although there is no detector that allows us to see the inside of an atom, scientists infer its structure from the properties of its components. Rutherford s model shows electrons orbiting the nucleus like planets around the sun. In Bohr s model the electrons travel around the nucleus in specific energy levels. According to the current model, electron orbitals do not have sharp boundaries and the electrons are portrayed as a cloud. [Pg.130]

Step by step, scientists such as Rutherford, Bohr, and de Broglie had been unraveling the mysteries of the atom. However, a conclusion reached by the German theoretical physicist Werner Heisenberg (1901-1976), a contemporary of de Broglie, proved to have profound implications for atomic models. [Pg.130]

The incompatibility of Rutherford s planetary model, based soundly on experimental data, with the principles of classical physics was the most fundamental of the conceptual challenges facing physicists in the early 1900s. The Bohr model was a temporary fix, sufficient for the interpretation of hydrogen (H) atomic spectra as arising from transitions between stationary states of the atom. The stability of atoms and molecules finally could be explained only after quantum mechanics had been developed. [Pg.170]


See other pages where Atoms, Rutherford-Bohr model is mentioned: [Pg.3]    [Pg.10]    [Pg.59]    [Pg.4]    [Pg.447]    [Pg.4]    [Pg.4]    [Pg.187]    [Pg.33]    [Pg.1]    [Pg.51]    [Pg.413]    [Pg.230]    [Pg.154]    [Pg.40]    [Pg.334]    [Pg.165]    [Pg.102]    [Pg.56]    [Pg.37]    [Pg.176]    [Pg.64]    [Pg.206]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Atomic Rutherford) model

Atomic modeling

Atomic modelling

Atomic models

Atomic models Bohr model

Atomic structure Bohr-Rutherford model

Atoms Bohr atom

Atoms Bohr model

Atoms Rutherford model

Atoms and atomic structure Rutherford-Bohr model

Atoms models

Bohr atom

Bohr atomic model

Bohr model

Bohr-Rutherford model

Bohrs

Models and theories Rutherford-Bohr model of atom

Rutherford

Rutherford model

Rutherford-Bohr atomic model

Rutherford-Bohr atomic model

© 2024 chempedia.info