Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Duplex atomizer

Hollow Sprays. Most atomizers that impart swid to the Hquid tend to produce a cone-shaped hoUow spray. Although swid atomizers can produce varying degrees of hoUowness in the spray pattern, they aU seem to exhibit similar spray dynamic features. For example, detailed measurements made with simplex, duplex, dual-orifice, and pure airblast atomizers show similar dynamic stmctures in radial distributions of mean droplet diameter, velocity, and Hquid volume flux. Extensive studies have been made (30,31) on the spray dynamics associated with pressure swid atomizers. Based on these studies, some common features were observed. Test results obtained from a pressure swid atomizer spray could be used to iUustrate typical dynamic stmctures in hoUow sprays. The measurements were made using a phase Doppler spray analyzer. [Pg.331]

Figure 5 Time dependence of RMSD of atomic coordinates from canonical A- and B-DNA forms m two trajectories of a partially hydrated dodecamer duplex. The A and B (A and B coiTespond to A and B forms) trajectories started from the same state and were computed with internal and Cartesian coordinates as independent variables, respectively. (From Ref. 54.)... Figure 5 Time dependence of RMSD of atomic coordinates from canonical A- and B-DNA forms m two trajectories of a partially hydrated dodecamer duplex. The A and B (A and B coiTespond to A and B forms) trajectories started from the same state and were computed with internal and Cartesian coordinates as independent variables, respectively. (From Ref. 54.)...
Although experimental studies of DNA and RNA structure have revealed the significant structural diversity of oligonucleotides, there are limitations to these approaches. X-ray crystallographic structures are limited to relatively small DNA duplexes, and the crystal lattice can impact the three-dimensional conformation [4]. NMR-based structural studies allow for the determination of structures in solution however, the limited amount of nuclear overhauser effect (NOE) data between nonadjacent stacked basepairs makes the determination of the overall structure of DNA difficult [5]. In addition, nanotechnology-based experiments, such as the use of optical tweezers and atomic force microscopy [6], have revealed that the forces required to distort DNA are relatively small, consistent with the structural heterogeneity observed in both DNA and RNA. [Pg.441]

Molecular dynamics simulations have also been used to interpret phase behavior of DNA as a function of temperature. From a series of simulations on a fully solvated DNA hex-amer duplex at temperatures ranging from 20 to 340 K, a glass transition was observed at 220-230 K in the dynamics of the DNA, as reflected in the RMS positional fluctuations of all the DNA atoms [88]. The effect was correlated with the number of hydrogen bonds between DNA and solvent, which had its maximum at the glass transition. Similar transitions have also been found in proteins. [Pg.448]

Performance. The total time for 500 steps of dynamics and 25 nonbond updates for the standard CHARMM benchmark (Brunger, A. T., Harvard University, personal communication, 1985.), a B-DNA eleven-mer duplex with 706 atoms and a 11.5 angstrom nonbond cutoff (77000 nonbond pairs) is found in Table II. [Pg.129]

NU(C) base atoms (5) The stereoselectivity of the BPDEs during intercalative covalent binding in kinked DNA and (6) The possible reorientation of the complex to yield an externally bound adduct. The energetics for each of these processes will be presented to identify the important steps that influence the binding of specific isomers. It will be shown that the orientation of each diastereoisomer of BPDE about specific base atoms in kinked receptor sites in the duplex DNA during covalent bond formation is the determining factor in stereoselectivity. [Pg.255]

An alternative to the GB, COSMO, and Poisson electrostatic calculations is to model the solution to the Poisson equation in terms of pair potentials between solute atoms this procedure is based on the physical picture that the solvent screens the intra-solute Coulombic interactions of the solute, except for the critical descreening of one part of the solute from the solvent by another part of this solute. This descreening can be modeled in an average way to a certain level of accuracy by pairwise functions of atomic positions.18, M 65 One can obtain quite accurate solvation energies in this way, and it has recently been shown that this algorithm provides a satisfactory alternative to more expensive explicit-solvent simulations even for the demanding cases of 10-base-pair duplexes of DNA and RNA in water.66... [Pg.82]

Duplex 20-200 Gas turbine combustors Simple, Cheap, Wide spray angle, Good atomization over a wide range of liquid flow rates Narrowing spray angle with increasing liquid flow rate... [Pg.23]

In a duplex atomizer (Fig. 2.2), the swirl chamber consists of two sets of tangential swirl ports primary and secondary ports. The primary ports are for low flow rates and the secondary ports are the main passage for high flow rates. During operation, the primary swirl ports are supplied first with a liquid from the primary manifold, while a spring-loaded pressurizing valve prevents the liquid from entering the secondary manifold. When a predetermined injection... [Pg.31]

As mentioned in the previous section, a major drawback of the simplex atomizer is the poor atomization quality at the lowest flow rate due to too-low pressure differential if swirl ports are sized to allow the maximum flow rate at the maximum injection pressure. This problem may be resolved by using dual-orifice, duplex, or spill-return atomizers. Alternatively, the atomization processes at low injection pressures can be augmented via forced aerodynamic instabilities by using air or gas stream(s) or jet(s). This is based on the beneficial effect of flowing air in assisting the disintegration of a liquid j et or sheet, as recognized in the application of the shroud air in fan spray and pressure-swirl atomization. [Pg.37]


See other pages where Duplex atomizer is mentioned: [Pg.127]    [Pg.129]    [Pg.443]    [Pg.445]    [Pg.448]    [Pg.257]    [Pg.972]    [Pg.528]    [Pg.562]    [Pg.403]    [Pg.377]    [Pg.194]    [Pg.180]    [Pg.335]    [Pg.337]    [Pg.348]    [Pg.351]    [Pg.351]    [Pg.352]    [Pg.354]    [Pg.363]    [Pg.97]    [Pg.97]    [Pg.200]    [Pg.331]    [Pg.87]    [Pg.104]    [Pg.161]    [Pg.112]    [Pg.171]    [Pg.251]    [Pg.253]    [Pg.267]    [Pg.323]    [Pg.185]    [Pg.22]    [Pg.31]    [Pg.32]    [Pg.32]    [Pg.33]   
See also in sourсe #XX -- [ Pg.31 ]




SEARCH



DUPLEX

Duplexe

Duplexer

© 2024 chempedia.info