Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic properties two-electron atoms

A two-electron atom consists of a nucleus with charge +Ze and two electrons. This class includes the hydride anion H (Z = 1), the neutral He atom (Z = 2), and the series of cations, Li+ (Z = 3), Be (Z = 4), etc. If we omit the kinetic energy of the nucleus and neglect electron spin, the wavefunction of the atom is a function of the six coordinates determining the positions of the two electrons  [Pg.23]


In this section, we extend the above discussion to the isotopomers of X3 systems, where X stands for an alkali metal atom. For the lowest two electronic states, the permutational properties of the electronic wave functions are similar to those of Lij. Their potential energy surfaces show that the baniers for pseudorotation are very low [80], and we must regard the concerned particles as identical. The Na atom has a nuclear spin " K, and K have nuclear... [Pg.604]

Boranes are typical species with electron-deficient bonds, where a chemical bond has more centers than electrons. The smallest molecule showing this property is diborane. Each of the two B-H-B bonds (shown in Figure 2-60a) contains only two electrons, while the molecular orbital extends over three atoms. A correct representation has to represent the delocalization of the two electrons over three atom centers as shown in Figure 2-60b. Figure 2-60c shows another type of electron-deficient bond. In boron cage compounds, boron-boron bonds share their electron pair with the unoccupied atom orbital of a third boron atom [86]. These types of bonds cannot be accommodated in a single VB model of two-electron/ two-centered bonds. [Pg.68]

The one-center two-electron integrals in the MNDO method are derived from experimental data on isolated atoms. Most were obtained from Oleari s work L. Oleari, L. DiSipio, and G. DeMich-ells. Mol. Phys., 10, 97( 1977)1, but a few were obtained by IDewar using fits to molecular properties. [Pg.290]

Each of these tools has advantages and limitations. Ab initio methods involve intensive computation and therefore tend to be limited, for practical reasons of computer time, to smaller atoms, molecules, radicals, and ions. Their CPU time needs usually vary with basis set size (M) as at least M correlated methods require time proportional to at least M because they involve transformation of the atomic-orbital-based two-electron integrals to the molecular orbital basis. As computers continue to advance in power and memory size, and as theoretical methods and algorithms continue to improve, ab initio techniques will be applied to larger and more complex species. When dealing with systems in which qualitatively new electronic environments and/or new bonding types arise, or excited electronic states that are unusual, ab initio methods are essential. Semi-empirical or empirical methods would be of little use on systems whose electronic properties have not been included in the data base used to construct the parameters of such models. [Pg.519]

For the orbital parts of the electronic wave functions of two electronic states the selection rules depend entirely on symmetry properties. [In fact, the electronic selection rules can also be obtained, from symmetry arguments only, for diatomic molecules and atoms, using the (or and Kf point groups, respectively but it is more... [Pg.275]

Among the alkali metals, Li, Na, K, Rb, and Cs and their alloys have been used as exohedral dopants for Cgo [25, 26], with one electron typically transferred per alkali metal dopant. Although the metal atom diffusion rates appear to be considerably lower, some success has also been achieved with the intercalation of alkaline earth dopants, such as Ca, Sr, and Ba [27, 28, 29], where two electrons per metal atom M are transferred to the Cgo molecules for low concentrations of metal atoms, and less than two electrons per alkaline earth ion for high metal atom concentrations. Since the alkaline earth ions are smaller than the corresponding alkali metals in the same row of the periodic table, the crystal structures formed with alkaline earth doping are often different from those for the alkali metal dopants. Except for the alkali metal and alkaline earth intercalation compounds, few intercalation compounds have been investigated for their physical properties. [Pg.38]

These reactions show sulfur in the role of an oxidizing agent. The properties of compounds such as ZnS suggest they contain the sulfide ion, S-2. The formation of this ion again can be expected on the basis of the fact that the neutral sulfur atom has two electrons less than enough to fill the valence orbitals. Acquisition of two electrons completely fills the low energy valence orbitals and solid ionic compounds can be formed. [Pg.369]

A covalent bond between two atoms requires two electrons and two orbitals, one for each atom.f The factors determining the properties of the covalent bonds formed by an atom are primarily the number and nature of the orbitals (hybridised bond orbitals) available to the atom, and the number of electrons that it can use in bond formation without losing its electrical neutrality. The opportunities for stabilisation through resonance of covalent bonds among alternative positions are also important. [Pg.228]

The structure of CaB contains bonding bands typical of the boron sublattice and capable of accommodating 20 electrons per CaB formula, and separated from antibonding bands by a relatively narrow gap (from 1.5 to 4.4 eV) . The B atoms of the B(, octahedron yield only 18 electrons thus a transfer of two electrons from the metal to the boron sublattice is necessary to stabilize the crystalline framework. The semiconducting properties of M B phases (M = Ca, Sr ", Ba, Eu, Yb ) and the metallic ones of M B or M B5 phases (Y, La, Ce, Pr, Nd ", Gd , Tb , Dy and Th ) are directly explained by this model . The validity of these models may be questionable because of the existence and stability of Na,Ba, Bft solid solutions and of KB, since they prove that the CaB -type structure is still stable when the electron contribution of the inserted atom is less than two . A detailed description of physical properties of hexaborides involves not only the bonding and antibonding B bands, but also bonds originating in the atomic orbitals of the inserted metal . ... [Pg.227]

The magnetic properties of electrons arise from a property called spin, which we describe in more detail in Chapter 8. All electrons have spin of the same magnitude, but electron spin can respond to a magnet in two different ways. Most magnetic effects associated with atoms are caused by the spins of their electrons. Iron and nickel are permanent magnets because of the cooperative effect of many electrons. [Pg.464]

Studies of the electron distributions around outer atoms consistently show that hydrogen is always associated with two electrons (one pair). All other outer atoms always have eight electrons (four pairs). The reason for this regularity is that each atom in a molecule is most stable when its valence shell of electrons is complete. For hydrogen, this requires a single pair of electrons, enough to make full use of the hydrogen 1 S orbital. Any other atom needs four pairs of electrons, the maximum number that can be accommodated by an .S p valence shell. Details of these features can be traced to the properties of atoms (Chapter 8) and are discussed further in Chapter 10. [Pg.587]

In the liquid state, the molecules are still free to move in three dimensions but stiU have to be confined in a container in the same manner as the gaseous state if we expect to be able to measure them. However, there are important differences. Since the molecules in the liquid state have had energy removed from them in order to get them to condense, the translational degrees of freedom are found to be restricted. This is due to the fact that the molecules are much closer together and can interact with one another. It is this interaction that gives the Uquid state its unique properties. Thus, the molecules of a liquid are not free to flow in any of the three directions, but are bound by intermolecular forces. These forces depend upon the electronic structure of the molecule. In the case of water, which has two electrons on the ojQ gen atom which do not participate in the bonding structure, the molecule has an electronic moment, i.e.- is a "dipole". [Pg.12]

The behavior of a multi-particle system with a symmetric wave function differs markedly from the behavior of a system with an antisymmetric wave function. Particles with integral spin and therefore symmetric wave functions satisfy Bose-Einstein statistics and are called bosons, while particles with antisymmetric wave functions satisfy Fermi-Dirac statistics and are called fermions. Systems of " He atoms (helium-4) and of He atoms (helium-3) provide an excellent illustration. The " He atom is a boson with spin 0 because the spins of the two protons and the two neutrons in the nucleus and of the two electrons are paired. The He atom is a fermion with spin because the single neutron in the nucleus is unpaired. Because these two atoms obey different statistics, the thermodynamic and other macroscopic properties of liquid helium-4 and liquid helium-3 are dramatically different. [Pg.218]


See other pages where Atomic properties two-electron atoms is mentioned: [Pg.23]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.23]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.6]    [Pg.160]    [Pg.211]    [Pg.71]    [Pg.232]    [Pg.309]    [Pg.251]    [Pg.66]    [Pg.316]    [Pg.4]    [Pg.21]    [Pg.7]    [Pg.91]    [Pg.29]    [Pg.157]    [Pg.777]    [Pg.64]    [Pg.415]    [Pg.747]    [Pg.251]    [Pg.21]    [Pg.83]    [Pg.98]    [Pg.76]    [Pg.19]    [Pg.22]   


SEARCH



Atomic property

Atoms electronic properties

© 2024 chempedia.info