Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric reactions boron aldol reaction

Krische and coworkers [44] developed a Rh-catalyzed asymmetric domino Michael/aldol reaction for the synthesis of substituted cyclopentanols and cyclohex-anols. In this process, three contiguous stereogenic centers, including a quaternary center, are formed with excellent diastereo- and enantioselectivity. Thus, using an enantiopure Rh-BINAP catalyst system and phenyl boronic acid, substrates 2-108 are converted into the correspondding cyclized products 2-109 in 69-88% yield and with 94 and 95% ee, respectively (Scheme 2.24). [Pg.63]

The boron-aldol reaction of the p-methoxyben-zyl(PMB)-protected methylketone 16 proceeds with excellent 1,5-anti-selectivity (Scheme 4). In cases where the asymmetric induction is lower it may be improved by a double stereodifferential aldol reaction with chiral boron ligands [7]. The reason for this high stereoselectivity is currently unknown. Ab initio calculations suggest the involvement of twisted boat structures rather than chair transition structures [6]. [Pg.59]

Their 3,3 -substituents are utilized not only for their steric bulk, but also for the coordination to metals. Yamamoto and coworkers employed a boron complex of 3,3 -bis(2-hydroxyphenyl) BINOL in the asymmetric Diels-Alder reaction of cyclopentadiene and acrylaldehyde (equation 70) . The ligand possesses two additional hydroxy groups and forms a helical structure on coordination. The catalyst is considered to function as a chiral Brpnsted acid and a Lewis acid. The complex was also used in the Diels-Alder reactions and aldol reactions of imines. Although addition of diethylzinc to aldehydes gives low ee using BINOL itself or its 3,3 -diphenyl derivative, the selectivity can be increased when coordinating groups are introduced at the 3,3 -positions. Katsuki and... [Pg.693]

Altogether, four asymmetric, a r/-selective, boron aldol reactions were employed in this highly convergent synthesis (26 steps longest linear sequence, 5.3% overall yield), which ensured a high level of stereocontrol throughout. [Pg.200]

Altogether, our total synthesis of (+)-discodermolide uses four asymmetric boron aldol reactions and proceeds in 27 steps and 7.7% overall yield (for the longest linear sequence starting from commercial methyl (S)-3-hydroxy-2-methylpropionate). [Pg.204]

Typical Procedure for syn-Selective Asymmetric Boron Aldol Reaction (Eq. (17)) [13]... [Pg.136]

SCHEME 2.109 Evans auxiliary performing highly iyn-selective asymmetric boron aldol reaction. [Pg.95]

A key step in the synthesis of the spiroketal subunit is the convergent union of intermediates 8 and 9 through an Evans asymmetric aldol reaction (see Scheme 2). Coupling of aldehyde 9 with the boron enolate derived from imide 8 through an asymmetric aldol condensation is followed by transamination with an excess of aluminum amide reagent to afford intermediate 38 in an overall yield of 85 % (see Scheme 7). During the course of the asymmetric aldol condensation... [Pg.496]

Other reactions adapted from asymmetric aldol reactions suffer in comparison from the fact that (probably due to the strength of the boron-nitrogen bond) boron-mediated processes generally yield the intermediate 2-halo-3-aminoester products rather than aziridine products directly [51]. [Pg.134]

Double asymmetric induction (See section 1.5.3) can also be employed in aldol reactions. When chiral aldehyde 15 is treated with achiral boron-mediated enolate 14, a mixture of diastereomers is obtained in a ratio of 1.75 1. However, when the same aldehyde 15 is allowed to react with enolates derived from Evans auxiliary 8, a syn-aldol product 16 is obtained with very high stereo-... [Pg.139]

Compound 17 is the so-called (+)-Prelog-Djerassi lactonic acid derived via the degradation of either methymycin or narbomycin. This compound embodies important architectural features common to a series of macrolide antibiotics and has served as a focal point for the development of a variety of new stereoselective syntheses. Another preparation of compound 17 is shown in Scheme 3-7.11 Starting from 8, by treating the boron enolate with an aldehyde, 20 can be synthesized via an asymmetric aldol reaction with the expected stereochemistry at C-2 and C-2. Treating the lithium enolate of 8 with an electrophile affords 19 with the expected stereochemistry at C-5. Note that the stereochemistries in the aldol reaction and in a-alkylation are opposite each other. The combination of 19 and 20 gives the final product 17. [Pg.141]

The use of tartrates as chiral auxiliaries in asymmetric reactions of allenyl bor-onic acid was first reported by Haruta et al.69 in 1982. However, it was not for several years that Roush et al.,70 after extensive study, achieved excellent results in the asymmetric aldol reactions induced by a new class of tartrate ester based allyl boronates. [Pg.168]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

A review of enantioselective aldol additions of latent enolate equivalents covers a variety of Sn", boron, Ti, Cu, lanthanide, and Lewis base catalysts. Asymmetric aldol reactions using boron enolates have been reviewed (401 references). ... [Pg.11]

ANTI-SELECTIVE BORON-MEDIATED ASYMMETRIC ALDOL REACTION OF CARBOXYLIC ESTERS SYNTHESIS OF (2S, 3R)-2,4-DIMETHYL-1,3-PENTANEDIOL... [Pg.59]

Several methods for the anti-selective, asymmetric aldol reaction recorded in the literature include (i) the use of boron, titanium, or tin(ll) enolate carrying chiral ligands, (ii) Lewis acid-catalyzed aldol reactions of a metal enolate of chiral carbonyl compounds, and (iii) the use of the metal enolate derived from a chiral carbonyl compound. Although many of these methods provide anti-aldols with high enantioselectivities, these methods are not as convenient or widely applicable as the method reported here, because of problems associated with the availability of reagents, the generality of reactions, or the required reaction conditions. [Pg.61]

Table Boron-Mediated Asymmetric Aldol Reactions... Table Boron-Mediated Asymmetric Aldol Reactions...
Dialkylboron trifluoromethanesulfonates (triflates) are particularly useful reagents for the preparation of boron enolates from carbonyl compounds, including ketones, thioesters and acyloxazolidinones.4 Recently, the combination of dicylohexylboron trifluoromethanesulfonate and triethylamine was found to effect the enolization of carboxylic esters.5 The boron-mediated asymmetric aldol reaction of carboxylic esters is particularly useful for the construction of anti (3-hydroxy-a-methyl carbonyl units.6 The present procedure is a slight modification of that reported by Brown, et al.2... [Pg.107]

ANTI-SELECTIVE BORON-MEDIATED ASYMMETRIC ALDOL REACTION OF 116... [Pg.284]

Anti-selective Boron-mediated Asymmetric Aldol Reaction of Carboxylic Esters. [Pg.262]

Asymmetric induction in the aldol reaction of enolsilane and metal enolate nucleophiles with yS-substituted aldehydes gives rise to both excellent yields and good diastereoselectivities (equation 128)507. The best diastereoselectivity was obtained using a trimethylsilyl enolate in the presence of boron trifluoride-etherate (92 8 anti. syn). The key step in the synthesis of the N-terminal amino acid analogue of nikkomycin B and Bx (nucleoside peptide antibiotics) has been performed using this type of methodology508. [Pg.741]

The approach for the enantioselective aldol reaction based on oxazolidinones like 22 and 23 is called Evans asymmetric aldol reaction.14 Conversion of an oxazolidinone amide into the corresponding lithium or boron enolates yields the Z-stereoisomers exclusively. Reaction of the Z-enolate 24 and the carbonyl compound 6 proceeds via the cyclic transition state 25, in which the oxazolidinone carbonyl oxygen and both ring oxygens have an anti conformation because of dipole interactions. The back of the enolate is shielded by the benzyl group thus the aldehyde forms the six-membered transition state 25 by approaching from the front with the larger carbonyl substituent in pseudoequatorial position. The... [Pg.161]


See other pages where Asymmetric reactions boron aldol reaction is mentioned: [Pg.105]    [Pg.39]    [Pg.147]    [Pg.134]    [Pg.673]    [Pg.499]    [Pg.613]    [Pg.620]    [Pg.136]    [Pg.165]    [Pg.410]    [Pg.65]    [Pg.73]    [Pg.585]    [Pg.209]    [Pg.123]    [Pg.493]    [Pg.214]    [Pg.218]    [Pg.221]    [Pg.244]    [Pg.328]   
See also in sourсe #XX -- [ Pg.549 ]




SEARCH



Aldols boron aldol reaction

Asymmetric aldol reaction boron reagents

Asymmetric aldol reactions

Asymmetric aldol reactions using boron

Asymmetric aldol reactions using boron enolates

Asymmetric aldol reactions using chiral boron enolates

Boron aldol

Boron aldolate

Boron-Mediated Asymmetric Aldol Reactions

Boronation reaction

Reactions Boron

Selective Asymmetric Boron Aldol Reactions

© 2024 chempedia.info