Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric synthesis epoxidation

Lakner FJ, Hager LP (1997) Chloroperoxidase-Mediated Asymmetric Epoxidation. Synthesis of (R)-Dimethyl 2-Methylaziridine-l,2-dicarboxylate - A Potential a-Methylamino Acid Synthon. Tetrahedron Asym 8 3547... [Pg.483]

AE reactions of simple olefins. The Sharpless AE reaction has been supplemented by other approaches to asymmetric epoxide synthesis the most evident goal being to obviate the need for an allylic alcohol. Attempts to carry out asymmetric epoxidation reactions on simple olefins have utilized transition-metal-containing catalysts such as porphyrins as well as stoichiometric chiral reagents (peroxides, dioxiranes, and oxaziridines). These approaches have been summarized [19]. [Pg.330]

Cappi MW, Chen WP, Flood RW, liao YW, Rohrats SM, Skidmore J, Smith JA, Williamson NM (1998) New Proeedutes fra the Julia-Colonna Asymmetric Epoxidation Synthesis of (-t)-Clausenamide. Chtan Commun 1159... [Pg.165]

Scheme 14.47 Bristol-Myers Squibb s application of asymmetric epoxide synthesis. Scheme 14.47 Bristol-Myers Squibb s application of asymmetric epoxide synthesis.
Fig. 8. Use of Sharpless asymmetric epoxidation for the preparation of an intermediate in the synthesis of FK-506 (105), where represents the chiral... Fig. 8. Use of Sharpless asymmetric epoxidation for the preparation of an intermediate in the synthesis of FK-506 (105), where represents the chiral...
The asymmetric epoxidation of electron-poor cinnamate ester derivatives was highlighted by Jacobsen in the synthesis of the Taxol side-chain. Asymmetric epoxidation of ethyl cinnamate provided the desired epoxide in 96% ee and in 56% yield. Epoxide ring opening with ammonia followed by saponification and protection provided the Taxol side-chain 46 (Scheme 1.4.12). [Pg.40]

The essential features of the Masamune-Sharpless hexose synthesis strategy are outlined in a general way in Scheme 4. The strategy is based on the reiterative- application of a two-carbon extension cycle. One cycle comprises the following four key transformations (I) homologation of an aldehyde to an allylic alcohol (II) Sharpless asymmetric epoxidation of the allylic alcohol ... [Pg.298]

The emergence of the powerful Sharpless asymmetric epoxida-tion (SAE) reaction in the 1980s has stimulated major advances in both academic and industrial organic synthesis.14 Through the action of an enantiomerically pure titanium/tartrate complex, a myriad of achiral and chiral allylic alcohols can be epoxidized with exceptional stereoselectivities (see Chapter 19 for a more detailed discussion). Interest in the SAE as a tool for industrial organic synthesis grew substantially after Sharpless et al. discovered that the asymmetric epoxidation process can be conducted with catalytic amounts of the enantiomerically pure titanium/tartrate complex simply by adding molecular sieves to the epoxidation reaction mix-... [Pg.345]

Scheme 4. The Sharpless asymmetric epoxidation in the J.T. Baker Company s commercial synthesis of (7/ ,8S)-disparlure (15). Scheme 4. The Sharpless asymmetric epoxidation in the J.T. Baker Company s commercial synthesis of (7/ ,8S)-disparlure (15).
The Aggarwal group has used chiral sulfide 7, derived from camphorsulfonyl chloride, in asymmetric epoxidation [4]. Firstly, they prefonned the salt 8 from either the bromide or the alcohol, and then formed the ylide in the presence of a range of carbonyl compounds. This process proved effective for the synthesis of aryl-aryl, aryl-heteroaryl, aryl-alkyl, and aryl-vinyl epoxides (Table 1.2, Entries 1-5). [Pg.4]

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

Asymmetric epoxidations of alkenes have been intensively studied since Sharpless initial report on asymmetric epoxidation of allylic alcohols in 1980. This reaction, discussed in Section 9.1.3, has become one of the most widely employed reactions in asymmetric synthesis, due to its reliability and high enantioselectivity [2],... [Pg.315]

The development of Sharpless asymmetric epoxidation (SAE) of allylic alcohols in 1980 constitutes a breakthrough in asymmetric synthesis, and to date this method remains the most widely applied asymmetric epoxidation technique [34, 44]. A wide range of substrates can be used in the reaction ( ) -allylic alcohols generally give high enantioselectivity, whereas the reaction is more substrate-dependent with (Z)-allylic alcohols [34]. [Pg.322]

The past thirty years have witnessed great advances in the selective synthesis of epoxides, and numerous regio-, chemo-, enantio-, and diastereoselective methods have been developed. Discovered in 1980, the Katsuki-Sharpless catalytic asymmetric epoxidation of allylic alcohols, in which a catalyst for the first time demonstrated both high selectivity and substrate promiscuity, was the first practical entry into the world of chiral 2,3-epoxy alcohols [10, 11]. Asymmetric catalysis of the epoxidation of unfunctionalized olefins through the use of Jacobsen s chiral [(sale-i i) Mi iln] [12] or Shi s chiral ketones [13] as oxidants is also well established. Catalytic asymmetric epoxidations have been comprehensively reviewed [14, 15]. [Pg.447]

Chiral epoxides and their corresponding vicinal diols are very important intermediates in asymmetric synthesis [163]. Chiral nonracemic epoxides can be obtained through asymmetric epoxidation using either chemical catalysts [164] or enzymes [165-167]. Biocatalytic epoxidations require sophisticated techniques and have thus far found limited application. An alternative approach is the asymmetric hydrolysis of racemic or meso-epoxides using transition-metal catalysts [168] or biocatalysts [169-174]. Epoxide hydrolases (EHs) (EC 3.3.2.3) catalyze the conversion of epoxides to their corresponding vicinal diols. EHs are cofactor-independent enzymes that are almost ubiquitous in nature. They are usually employed as whole cells or crude... [Pg.157]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

Asymmetric epoxidation is another important area of activity, initially pioneered by Sharpless, using catalysts based on titanium tetraisoprop-oxide and either (+) or (—) dialkyl tartrate. The enantiomer formed depends on the tartrate used. Whilst this process has been widely used for the synthesis of complex carbohydrates it is limited to allylic alcohols, the hydroxyl group bonding the substrate to the catalyst. Jacobson catalysts (Formula 4.3) based on manganese complexes with chiral Shiff bases have been shown to be efficient in epoxidation of a wide range of alkenes. [Pg.117]


See other pages where Asymmetric synthesis epoxidation is mentioned: [Pg.828]    [Pg.828]    [Pg.828]    [Pg.828]    [Pg.828]    [Pg.828]    [Pg.320]    [Pg.367]    [Pg.248]    [Pg.26]    [Pg.51]    [Pg.17]    [Pg.303]    [Pg.310]    [Pg.314]    [Pg.314]    [Pg.376]    [Pg.429]    [Pg.434]    [Pg.436]    [Pg.448]    [Pg.449]    [Pg.786]    [Pg.250]    [Pg.257]    [Pg.271]    [Pg.43]    [Pg.67]    [Pg.826]    [Pg.360]    [Pg.479]    [Pg.496]   
See also in sourсe #XX -- [ Pg.3 , Pg.586 , Pg.715 ]

See also in sourсe #XX -- [ Pg.3 , Pg.586 , Pg.715 ]




SEARCH



Asymmetric epoxidation

Asymmetric epoxidation drug synthesis

Asymmetric epoxidation natural products synthesis

Asymmetric epoxidation pharmaceutical products synthesis

Asymmetric epoxidation racemic synthesis

Asymmetric epoxidation stereoselective synthesis

Asymmetric epoxidation total synthesis

Asymmetric epoxide synthesis

Asymmetric synthesis Jacobsen-Katsuki epoxidation

Asymmetric synthesis Sharpless-Katsuki epoxidation

Epoxidations, asymmetric

Epoxide synthesis

Epoxides Jacobsen-Katsuki asymmetric synthesis

Epoxides Sharpless-Katsuki asymmetric synthesi

Epoxides asymmetric epoxidation

Epoxides synthesis

Epoxides, asymmetric synthesis

Epoxides, asymmetric synthesis

Epoxides, ring-opening, asymmetric synthesis

Sharpless asymmetric epoxidation Propranolol synthesis

Sharpless asymmetric epoxidation Synthesis

Sharpless asymmetric epoxidation natural products synthesis

Styrene epoxide, asymmetric synthesis

© 2024 chempedia.info