Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aspartate transamination

PEP carboxylase occurs in yeast, bacteria, and higher plants, but not in animals. The enzyme is specifically inhibited by aspartate, which is produced by transamination of oxaloacetate. Thus, organisms utilizing this enzyme control aspartate production by regulation of PEP carboxylase. Malic enzyme is found in the cytosol or mitochondria of many animal and plant ceils and is an NADPIT-dependent enzyme. [Pg.665]

Glyoxysomes do not contain all the enzymes needed to run the glyoxylate cycle succinate dehydrogenase, fumarase, and malate dehydrogenase are absent. Consequently, glyoxysomes must cooperate with mitochondria to run their cycle (Figure 20.31). Succinate travels from the glyoxysomes to the mitochondria, where it is converted to oxaloacetate. Transamination to aspartate follows... [Pg.670]

The second electron shuttle system, called the malate-aspartate shuttle, is shown in Figure 21.34. Oxaloacetate is reduced in the cytosol, acquiring the electrons of NADH (which is oxidized to NAD ). Malate is transported across the inner membrane, where it is reoxidized by malate dehydrogenase, converting NAD to NADH in the matrix. This mitochondrial NADH readily enters the electron transport chain. The oxaloacetate produced in this reaction cannot cross the inner membrane and must be transaminated to form aspartate, which can be transported across the membrane to the cytosolic side. Transamination in the cytosol recycles aspartate back to oxaloacetate. In contrast to the glycerol phosphate shuttle, the malate-aspartate cycle is reversible, and it operates as shown in Figure 21.34 only if the NADH/NAD ratio in the cytosol is higher than the ratio in the matrix. Because this shuttle produces NADH in the matrix, the full 2.5 ATPs per NADH are recovered. [Pg.704]

Compartmentation of these reactions to prevent photorespiration involves the interaction of two cell types, mescrphyll cells and bundle sheath cells. The meso-phyll cells take up COg at the leaf surface, where Og is abundant, and use it to carboxylate phosphoenolpyruvate to yield OAA in a reaction catalyzed by PEP carboxylase (Figure 22.30). This four-carbon dicarboxylic acid is then either reduced to malate by an NADPH-specific malate dehydrogenase or transaminated to give aspartate in the mesophyll cells. The 4-C COg carrier (malate or aspartate) then is transported to the bundle sheath cells, where it is decarboxylated to yield COg and a 3-C product. The COg is then fixed into organic carbon by the Calvin cycle localized within the bundle sheath cells, and the 3-C product is returned to the mesophyll cells, where it is reconverted to PEP in preparation to accept another COg (Figure 22.30). Plants that use the C-4 pathway are termed C4 plants, in contrast to those plants with the conventional pathway of COg uptake (C3 plants). [Pg.738]

Pyridoxamine phosphate serves as a coenzyme of transaminases, e.g., lysyl oxidase (collagen biosynthesis), serine hydroxymethyl transferase (Cl-metabolism), S-aminolevulinate synthase (porphyrin biosynthesis), glycogen phosphoiylase (mobilization of glycogen), aspartate aminotransferase (transamination), alanine aminotransferase (transamination), kynureninase (biosynthesis of niacin), glutamate decarboxylase (biosynthesis of GABA), tyrosine decarboxylase (biosynthesis of tyramine), serine dehydratase ((3-elimination), cystathionine 3-synthase (metabolism of methionine), and cystathionine y-lyase (y-elimination). [Pg.1290]

Aspartate and Asparagine. Transamination of oxaloacetate forms aspartate. The conversion of aspartate... [Pg.237]

Figure 28-3. Formation of alanine by transamination of pyruvate. The amino donor may be glutamate or aspartate. The other product thus is a-ketoglutarate or oxaloacetate. Figure 28-3. Formation of alanine by transamination of pyruvate. The amino donor may be glutamate or aspartate. The other product thus is a-ketoglutarate or oxaloacetate.
Alanine. Transamination of alanine forms pyruvate. Perhaps for the reason advanced under glutamate and aspartate catabolism, there is no known metabolic defect of alanine catabolism. Cysteine. Cystine is first reduced to cysteine by cystine reductase (Figure 30-7). Two different pathways then convert cysteine to pyruvate (Figure 30-8). [Pg.250]

GOT (AST is the more recent abbreviation) catalyzes the transamination of 1-aspartic acid in the presence of a-ketoglut-aric acid, with pyridoxal phosphate being a required co-enzyme. The reaction is ... [Pg.200]

For example, coupling alanine transamination (via ALT) with GLDH is shown in Figure 6.6b. A similar scheme can be drawn using, for example, aspartate transaminase in place of alanine transaminase. [Pg.178]

Transamination of alanine yields pyruvate catalysed by alanine transaminase (ALT) whilst aspartate produces oxaloacetate catalysed by aspartate transaminase (AST). All transaminase enzymes operate close to a true equilibrium (K eq 1, see Chapter 2) and... [Pg.255]

Unnatural Amino Acids by Enzymatic Transamination Synthesis of Glutamic Acid Analogues with Aspartate Aminotransferase... [Pg.306]

The same group have used the enzyme combination employed in the aspartate deracemization cited above to deracemize 2-naphthylalanine, hut have made use of an interesting innovation introduced by Helaine et al to pull over the poised equilibrium of the transamination reaction. Cysteine sulphinic acid was used as the amino donor in the transamination. The oxoacid product spontaneously decomposes in to pyruvic acid and SO2 (Scheme 3). [Pg.74]

After formation of the aldimine, numerous factors in the enzyme facilitate deprotonation of the a-carbon (Fig. 3, Step II). The lysine liberated by transimi-nation is utilized as a general base and is properly oriented for effective deprotonation [11]. Furthermore, the inductive effects of the ring system are tuned to increase the stabilization of the quinoid intermediate. For example, the aspartate group that interacts with the pyridyl nitrogen of the co enzyme promotes proto-nation to allow the ring to act as a more effective electron sink. In contrast, in alanine racemase, a less basic arginine residue in place of the aspartic acid is believed to favor racemization over transamination [12]. [Pg.7]

Figure 8.11 Five near-equilibrium reactions involved in transamination of five different amino adds. Three enzymes are involved in these reactions (1) alanine aminotransferase (2) aspartate aminotransferase (3) branched-chain amino acid aminotransferase, i.e. one enzyme catalyses the three reactions. (The branched-chain amino acids are essential.)... Figure 8.11 Five near-equilibrium reactions involved in transamination of five different amino adds. Three enzymes are involved in these reactions (1) alanine aminotransferase (2) aspartate aminotransferase (3) branched-chain amino acid aminotransferase, i.e. one enzyme catalyses the three reactions. (The branched-chain amino acids are essential.)...
The amino acids, aspartate and glutamate, are not taken up from the blood but are synthesised in the brain. This requires nitrogen (for the -NH2 groups) which is obtained from branched-chain amino acids via transamination, as in other tissues. [Pg.171]

Figure 8.29 The initial reactions of glutamine metabolism in kidney, intestine and cells of the immune system. The initial reaction in all these tissues is the same, glutamine conversion to glutamate catalysed by glutaminase the next reactions are different depending on the function of the tissue or organ. In the kidney, glutamate dehydrogenase produces ammonia to buffer protons. In the intestine, the transamination produces alanine for release and then uptake and formation of glucose in the liver. In the immune cells, transamination produces aspartate which is essential for synthesis of pyrimidine nucleotides required for DNA synthesis otherwise it is released into the blood to be removed by the enterocytes in the small intestine or by cells in the liver. Figure 8.29 The initial reactions of glutamine metabolism in kidney, intestine and cells of the immune system. The initial reaction in all these tissues is the same, glutamine conversion to glutamate catalysed by glutaminase the next reactions are different depending on the function of the tissue or organ. In the kidney, glutamate dehydrogenase produces ammonia to buffer protons. In the intestine, the transamination produces alanine for release and then uptake and formation of glucose in the liver. In the immune cells, transamination produces aspartate which is essential for synthesis of pyrimidine nucleotides required for DNA synthesis otherwise it is released into the blood to be removed by the enterocytes in the small intestine or by cells in the liver.
The oxaloacetate is then transported from mitochondrion into the cytosol but not directly, since there is no transporter for oxaloacetate in the mitochondrial membrane. This problem is solved by conversion of oxaloacetate to aspartate, by transamination, and it is the aspartate that is transported across the inner mitochondrial membrane to the cytosol, where oxaloacetate is regenerated from aspartate by a cytosolic aminotransferase enzyme. [Pg.192]

In the branched-chain amino acids (Val, Leu, He) and also tyrosine and ornithine, degradation starts with a transamination. For alanine and aspartate, this is actually the only degradation step. The mechanism of transamination is discussed in detail on p. 178. [Pg.180]

The fumarate produced in step [4] is converted via malate to oxaloacetate [6, 7], from which aspartate is formed again by transamination [9]. The glutamate required for reaction [9] is derived from the glutamate dehydrogenase reaction [8], which fixes the second NH4 " in an organic bond. Reactions [6] and [7] also occur in the tricarboxylic acid cycle. However, in urea formation they take place in the cytoplasm, where the appropriate isoenzymes are available. [Pg.182]

Non-essential amino acids are those that arise by transamination from 2-oxoacids in the intermediary metabolism. These belong to the glutamate family (Glu, Gin, Pro, Arg, derived from 2-oxoglutarate), the aspartate family (only Asp and Asn in this group, derived from oxaloacetate), and alanine, which can be formed by transamination from pyruvate. The amino acids in the serine family (Ser, Gly, Cys) and histidine, which arise from intermediates of glycolysis, can also be synthesized by the human body. [Pg.184]

In the malate shuttle (left)—which operates in the heart, liver, and kidneys, for example-oxaloacetic acid is reduced to malate by malate dehydrogenase (MDH, [2a]) with the help of NADH+HT In antiport for 2-oxogluta-rate, malate is transferred to the matrix, where the mitochondrial isoenzyme for MDH [2b] regenerates oxaloacetic acid and NADH+HT The latter is reoxidized by complex I of the respiratory chain, while oxaloacetic acid, for which a transporter is not available in the inner membrane, is first transaminated to aspartate by aspartate aminotransferase (AST, [3a]). Aspartate leaves the matrix again, and in the cytoplasm once again supplies oxalo-acetate for step [2a] and glutamate for return transport into the matrix [3b]. On balance, only NADH+H"" is moved from the cytoplasm into the matrix ATP is not needed for this. [Pg.212]

Figure 9-1. Molecular interconversions in handling of ammonia. The major enzyme responsible for interconversion of glutamate and a-ketoglutarate is glutamate dehydrogenase. No free ammonia is ever present during direct transfer of amino groups from alanine or aspartate via transamination to produce glutamate. ALT, alanine aminotransferase AST, aspartate aminotransferase. Figure 9-1. Molecular interconversions in handling of ammonia. The major enzyme responsible for interconversion of glutamate and a-ketoglutarate is glutamate dehydrogenase. No free ammonia is ever present during direct transfer of amino groups from alanine or aspartate via transamination to produce glutamate. ALT, alanine aminotransferase AST, aspartate aminotransferase.
In this transamination, the effect of para substitient groups has been studied using fluorinated phenylpyruvic acids and L-aspartic acid. From these results, the migratory preference is H > F > Cl > Br > CF3. This order has been attributed to the bulkiness of the substituted group [57]. Direct amination of p-substituted succinic acid with phenylalanine ammonialyase (EC 4.3.1.5) has suggested very high substrate specificity that the order of reaction rate is m-F o-F P-p-F >CF3. [Pg.119]

The second amino group now enters from aspartate (generated in mitochondria by transamination and transported into the cytosol) by a condensation reaction between the amino group of aspartate and the ureido... [Pg.667]

The carbon skeletons of asparagine and aspartate ultimately enter the citric acid cycle as oxaloacetate. The enzyme asparaginase catalyzes the hydrolysis of asparagine to aspartate, which undergoes transamination with a-lcetoglutarate to yield glutamate and oxaloacetate (Fig. 18-29). [Pg.685]


See other pages where Aspartate transamination is mentioned: [Pg.300]    [Pg.228]    [Pg.300]    [Pg.228]    [Pg.662]    [Pg.671]    [Pg.133]    [Pg.247]    [Pg.239]    [Pg.269]    [Pg.548]    [Pg.213]    [Pg.129]    [Pg.306]    [Pg.81]    [Pg.81]    [Pg.181]    [Pg.178]    [Pg.143]    [Pg.209]    [Pg.211]    [Pg.616]    [Pg.664]    [Pg.667]    [Pg.668]    [Pg.687]   
See also in sourсe #XX -- [ Pg.330 ]

See also in sourсe #XX -- [ Pg.136 , Pg.269 ]




SEARCH



Aspartate aminotransferase transamination

Aspartate formation by transamination

Transamination

Transaminitis

© 2024 chempedia.info