Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arylations tetrafluoroborate

In the iavestigation of the decomposition reaction of aryldia2onium tetrafluoroborates ia nitroben2ene, it was found that ia addition to uoroben2ene, 3,3 -dinitrobiphenyl was formed (67). An ionic type of arylation reaction seems to take place. Decomposition of aryldia2onium tetrafluoro-, tetrachloro-, and tetrabromoborates ia aromatic solvents leads to electrophilic ring arylation (68). [Pg.556]

In contrast, cleavage of alkyl and also aryl thioglycosides with dimethyl(meth-ylthio)sulfonium tetrafluoroborate takes place with total inversion of configuration [9] (equation 12) The latter reagent is commercially available or easily prepared as a crystalline nonhygroscopic solid [10]. All the three above-mentioned reagents... [Pg.266]

Schiemann reaction (Section 22.17) Preparation of an aryl fluoride by heating the diazonium fluoroborate formed by addition of tetrafluoroboric acid (HBF4) to a diazonium ion. [Pg.1293]

The preparation of an aryl fluoride—e.g. fluorobenzene 3—starting from an aryl amine—e.g. aniline 1—via an intermediate arenediazonium tetrafluoroborate 2, is called the Schiemann reaction (also called the Balz-Schiemann reaction) The diazotization of aniline 1 in the presence of tetrafluoroborate leads to formation of a benzenediazonium tetrafluoroborate 2 that can be converted into fluorobenzene 3 by thermolysis. [Pg.250]

Treatment of aniline 1 with nitric acid in the presence of tetrafluoroboric acid leads to a relatively stable benzenediazonium tetrafluoroborate 2 by the usual diazotization mechanism. There are several variants for the experimental procedure. Subsequent thermal decomposition generates an aryl cation species 4, which reacts with fluoroborate anion to yield fluorobenzene 3 " ... [Pg.250]

All these results are consistent with the hypothesis that aryl cations react in aqueous media at diffusion-controlled rates with all nucleophiles that are available in the immediate neighbourhood of the diazonium ion. On this basis Romsted and coworkers (Chaudhuri et al., 1993a, 1993b) used dediazoniation reactions as probes of the interfacial composition of association colloids. These authors determined product yields from dediazoniation of two arenediazonium tetrafluoroborates containing ft-hexadecyl residues (8.15 and 8.16) and the corresponding diazonium salts with methyl groups instead of Ci6H33 chains. ... [Pg.173]

Addition of hexafluorophosphate salts reduces the dediazoniation rate of 4-me-thylbenzenediazonium tetrafluoroborate in TFE/H20 (1 1) (Maskill and McCrud-den, 1992). However, as the concentration of these salts (0.12 — 0.23 M) does not affect the rate, it is evident that these salts are intercepting one of the intermediates, i.e., either the ion-molecule pair or the aryl cation. [Pg.174]

As discussed in Section 8.10, dediazoniation in methanol or ethanol yields mixtures of the corresponding aryl ethers and arenes, except with alcohols of very low nucleo-philicity such as trifluoroethanol, in which the aryl ether is the main product. Therefore aryl ethers are, in general, synthesized by alkylation of the respective phenol. Olah and Wu (1991) demonstrated, however, that phenylalkyl and aryl ethers can be obtained in 46-88% yield from benzenediazonium tetrafluoroborate using alkoxy- and phenoxytrimethylsilanes in solution in Freon 113 (l,l,2-trichloro-l,2,2-tri-fluoroethane) at 55-60 °C with ultrasonic irradiation. As seen from the stoichiometric... [Pg.227]

Mechanistically there is ample evidence that the Balz-Schiemann reaction is heterolytic. This is shown by arylation trapping experiments. The added arene substrates are found to be arylated in isomer ratios which are typical for an electrophilic aromatic substitution by the aryl cation and not for a homolytic substitution by the aryl radical (Makarova et al., 1958). Swain and Rogers (1975) showed that the reaction takes place in the ion pair with the tetrafluoroborate, and not, as one might imagine, with a fluoride ion originating from the dissociation of the tetrafluoroborate into boron trifluoride and fluoride ions. This is demonstrated by the insensitivity of the ratio of products ArF/ArCl in methylene chloride solution at 25 °C to excess BF3 concentration. [Pg.228]

Packer et al. (1981) found that y-irradiation reduces arenediazonium tetrafluoro-borates to aryl radicals. Packer and Taylor (1985) investigated the y-irradiation of 4-chlorobenzenediazonium tetrafluoroborate by a 60Co source in the presence of 1 alone or I- +13 . The major product in the presence of iodide was 4,4 -dichloroazo-benzene. With I- + 1 ", however, it was 4-chloroiodobenzene. Two other investigations of the reactivity of aryl radicals with iodine-containing species are important for the understanding of the chain process of iodo-de-diazoniation that starts after formation of the aryl radical. Kryger et al. (1977) showed that, in the thermal decomposition of phenylazotriphenylmethane, the rate of iodine abstraction from I2 is extremely fast (see also Ando, 1978, p. 341). Furthermore, evidence for the formation of the radical anion V2 was reported by Beckwith and Meijs (1987) and by Abey-wickrema and Beckwith (1987) (see Sec. 10.11). [Pg.236]

Recently Keumi et al. (1989) found that arenediazonium tetrafluoroborates readily decompose in the presence of azidotrimethylsilane in DMF solution to afford the corresponding aryl azides. [Pg.240]

A suitable catalyst for carboxy-de-diazoniations was found by Matsuda s group in their work on arylations of alkenes. As in the case of alkene arylations (Sec. 10.9), they used Pd11 acetate (2 mole %) and carbon monoxide (9 atm) for reactions with benzenediazonium tetrafluoroborate and sodium acetate in acetonitrile as solvent at room temperature (Nagira et al., 1980 82-85% yield). Similar results were obtained... [Pg.241]

The Pd°-catalyzed arylations using arenediazonium tetrafluoroborates are limited to those diazonium salts that can be manipulated at room temperature. The reaction can, if necessary, be performed at temperatures up to 50 °C by using a mixture of an arylamine and tert-butyl nitrite in chloroacetic acid or in a mixture of chloroacetic and acetic acid (Kikukawa et al., 1981a). Styrene reacted with fourteen arylamines in the presence of 5 mol-% Pd(dba)2 to give the corresponding substituted stilbenes in yields of 46-97%. It is important for good yields to carry out these reactions in an acidic system. Without acid the yield was low (11%), and diazo tars were also formed. [Pg.252]

Samsonova and Nikiforov, 1984), and porphyrin and phthalocyanine metal complexes (Becker et al., 1985a, 1986b Becker and Grossmann, 1990) were tested. That a series of relatively simple anions such as the oxalate monoanion, tetraphenyl bor-anate (Ph4B ), bromide, chloride, and even tetrafluoroborate can act as donors is, at least for the last mentioned anion, surprising, but Becker et al. (1985 b) were able to trap aryl radicals and in some cases also donor radicals (Cl, COO ) by spin trapping with nitrosodurene and phenyl-tert-butylnitrone. The photochemical effect is postulated to be due to ion pairs ArNJ X-. [Pg.281]

Aryldiazonium-tetrafluoroborate werden durch Natriumboranat in Methanol Oder in waBr. Losung unter Reduktion am endstandigcn Stickstoff-Atom zu Aryl-diazen reduziert, das in ein komplizicrtcs Gemisch zer-fallt5 s. [Pg.484]

Tetrasubstituted phosphinous amides of the type R2NPPh2 have been successfully arylated at phosphorus by the action of bromobenzene, in a process catalyzed by NiBr2, to give the aminophosphonium bromides [R2NPPh3] Br [109]. Other representative members of this class form phosphane-borane complexes [62], are aminated at phosphorus by chloramine to yield bis(amino)phos-phonium salts [110] and have been claimed to be protonated at phosphorus by ethereal tetrafluoroboric acid, as determined by NMR analysis [111]. [Pg.89]

The first widely used intermediates for nucleophilic aromatic substitution were the aryl diazonium salts. Aryl diazonium ions are usually prepared by reaction of an aniline with nitrous acid, which is generated in situ from a nitrite salt.81 Unlike aliphatic diazonium ions, which decompose very rapidly to molecular nitrogen and a carbocation (see Part A, Section 4.1.5), aryl diazonium ions are stable enough to exist in solution at room temperature and below. They can also be isolated as salts with nonnucleophilic anions, such as tetrafluoroborate or trifluoroacetate.82 Salts prepared with 0-benzenedisulfonimidate also appear to have potential for synthetic application.83... [Pg.1027]

Good yields of chlorides have also been obtained for reaction of isolated diazonium tetrafluoroborates with FeCl2-FeCl3 mixtures.100 It is also possible to convert anilines to aryl halides by generating the diazonium ion in situ. Reaction of anilines with alkyl nitrites and Cu(II) halides in acetonitrile gives good yields of aryl chlorides and bromides.101... [Pg.1030]

The reaction can be carried out efficiently using aryl diazonium tetrafluoroborates with crown ethers, polyethers, or phase transfer catalysts.103 In solvents that can act as halogen atom donors, the radicals react to give aryl halides. Bromotrichloromethane gives aryl bromides, whereas methyl iodide and diiodomethane give iodides.104 The diazonium ions can also be generated by in situ methods. Under these conditions bromoform and bromotrichloromethane have been used as bromine donors and carbon tetrachloride is the best chlorine donor.105 This method was used successfully for a challenging chlorodeamination in the vancomycin system. [Pg.1031]

Fluorine substituents can also be introduced via diazonium ions. One procedure is to isolate aryl diazonium tetrafluoroborates. These decompose thermally to give aryl fluorides.106 Called the Schiemann reaction, it probably involves formation of an aryl cation that abstracts fluoride ion from the tetrafluoroborate anion.107... [Pg.1031]

Hexfluorophosphate salts behave similarly.108 The diazonium tetrafluoroborates can be prepared either by precipitation from an aqueous solution by fluoroboric acid109 or by anhydrous diazotization in ether, THF, or acetonitrile using r-butyl nitrite and boron trifluoride.110 Somewhat milder reaction conditions can be achieved by reaction of aryl diazo sulfide adducts with pyridine-HF in the presence of AgF or AgNQ3. [Pg.1031]

Entries 7 and 8 illustrate conversion of diazonium salts to phenols. Entries 9 and 10 use the traditional conditions for the Sandmeyer reaction. Entry 11 is a Sandmeyer reaction under in situ diazotization conditions, whereas Entry 12 involves halogen atom transfer from solvent. Entry 13 is an example of formation of an aryl iodide. Entries 14 and 15 are Schiemann reactions. The reaction in Entry 16 was used to introduce a chlorine substituent on vancomycin. Of several procedures investigated, the CuCl-CuCl2 catalysis of chlorine atom transfer form CC14 proved to be the best. The diazonium salt was isolated as the tetrafluoroborate after in situ diazotization. Entries 17 and 18 show procedures for introducing cyano and azido groups, respectively. [Pg.1032]

In the classical procedure, base is added to a two-phase mixture of the aqueous diazonium salt and an excess of the aromatic that is to be substituted. Improved yields can be obtained by using polyethers or phase transfer catalysts with solid aryl diazonium tetrafluoroborate salts in an excess of the aromatic reactant.177 Another source of aryl radicals is A-nitrosoacetanilides, which rearrange to diazonium acetates and give rise to aryl radicals via diazo oxides.178... [Pg.1053]


See other pages where Arylations tetrafluoroborate is mentioned: [Pg.340]    [Pg.340]    [Pg.107]    [Pg.163]    [Pg.274]    [Pg.227]    [Pg.74]    [Pg.166]    [Pg.171]    [Pg.205]    [Pg.227]    [Pg.241]    [Pg.252]    [Pg.252]    [Pg.254]    [Pg.259]    [Pg.282]    [Pg.346]    [Pg.370]    [Pg.281]    [Pg.118]    [Pg.874]    [Pg.208]    [Pg.281]    [Pg.248]    [Pg.220]    [Pg.626]   
See also in sourсe #XX -- [ Pg.258 , Pg.259 , Pg.262 , Pg.263 , Pg.681 , Pg.682 , Pg.684 ]




SEARCH



Aryl chlorides tetrafluoroborate

Aryl halides tetrafluoroborate

Aryl halides tri-tert-butylphosphonium tetrafluoroborate

Aryl iodides tetrafluoroborate

Arylation Arenediazonium tetrafluoroborates

Arylations di-tert-butyl phosphonium tetrafluoroborate

Arylations tri-tert-butylphosphonium tetrafluoroborate

Direct arylations tetrafluoroborate

© 2024 chempedia.info