Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclization aryl iodides

Scheme 3. Aryl iodide cyclizations by the Novartis group [11, 12]... Scheme 3. Aryl iodide cyclizations by the Novartis group [11, 12]...
The intramolecular coupling of organostannanes is applied to macrolide synthesis. In the zearalenone synthesis, no cyclization was observed between arylstannane and alkenyl iodide. However, intramolecular coupling take.s place between the alkenylstannane and aryl iodide in 706. A similar cyclization is possible by the reaction of the alkenylstannane 707 with enol triflate[579]. The coupling was applied to the preparation of the bicyclic 1,3-diene system 708[580]. [Pg.233]

Tandem cyclization/3-substitution can be achieved starting with o-(trifluoro-acetamido)phenylacetylenes. Cyclization and coupling with cycloalkenyl trif-lates can be done with Pd(PPh3)4 as the catalyst[9]. The Pd presumably cycles between the (0) and (II) oxidation levels by oxidative addition with the triflate and the reductive elimination which completes the 3-alkenylation. The N-protecting group is removed by solvolysis under the reaction conditions, 3-Aryl groups can also be introduced using aryl iodides[9]. [Pg.23]

During the course of an elegant synthesis of the multifunctional FR-900482 molecule [( )-43, Scheme 9], the Danishefsky group accomplished the assembly of tetracycle 42 using an intramolecular Heck arylation as a key step.24 In the crucial C-C bond forming reaction, exposure of aryl iodide 41 to a catalytic amount of tetra-kis(triphenylphosphine)palladium(o) and triethylamine in acetonitrile at 80 °C effects the desired Heck arylation, affording 42 in an excellent yield of 93 %. The impressive success of this cyclization reaction is noteworthy in view of the potentially sensitive functionality contained within 41. [Pg.574]

The last method for the preparation of 2-quinolones described in this chapter relies on a intramolecular Heck cyclization starting from heteroaryl-amides (Table 2) [57]. These are synthesized either from commercially available pyrrole- and thiophene-2-carboxylic acids (a, Table 2) or thiophene-and furan-3-carboxylic acids (b, Table 2) in three steps. The Heck cyclization is conventionally performed with W,Ar-dimethylacetamide (DMA) as solvent, KOAc as base and Pd(PPh3)4 as catalyst for 24 h at 120 °C resulting in the coupled products in 56-89% yields. As discussed in Sect. 3.4, transition metal-catalyzed reactions often benefit from microwave irradiation [58-61], and so is the case also for this intramolecular reaction. In fact, derivatives with an aryl iodide were successfully coupled by conventional methods, whereas the heteroarylbromides 18 and 19, shown in Table 2, could only be coupled in satisfying yields by using MAOS (Table 2). [Pg.320]

Zhao and Larock have described the synthesis of carbazoles, indoles, and dibenzofurans 118 via a Ic type cyclization that follows a sequence of Pd-catalyzed cross-coupling of alkynes and aryl iodides 116, then nitrogen-directed palladium migration to an arylpalladium intermediate 117 that undergoes an intramolecular Mizoroki-Heck ring closure <06JOC5340>. [Pg.153]

These compounds contain a furan ring fused to a benzene moiety in the 2,3-position. This synthesis was also described by Flynn et al. [73] and is shown in Scheme 25 involved the coupling of 2-iodo-5-methoxyphenol 104, 4-methoxyphenylethyne 105 to form the intermediate o-alkynylphenolate 106. Aryl iodide 107 was added to the phenolate in DMSO with heat. Oxidative addition, palladium(II)-induced cyclization and reductive elimination resulted in the product 108 with an 88% yield. [Pg.41]

The synthetic approach to the benzo[fo]furan is similar to that of the thiophenes described in Scheme 39. The synthetic approach was described by Flynn et al. [73], and an example synthesis is given in Scheme 40. The appropriate iodophenol 104 is coupled to the aryl alkyne 111. The intermediate 155 is subsequently cyclized in the presence of an appropriately substituted aryl iodide, e.g., 107 under an atmosphere of carbon monoxide gas, to give the benzo[fr]furan chalcone derivative 156. Deprotection of the hydroxyl produces the target compound 157. [Pg.53]

A distannation product of 2-butyne-l,4-diol oxidatively cyclizes to provide 3,4-bis(stannyl)furan, which then undergoes palladium-catalyzed cross-coupling with an aryl iodide to give 3,4-diarylfuran (Scheme 31).152,153... [Pg.749]

The research group of Cacchi made extensive use of these tandem cyclization-Heck reactions to prepare a wide variety of indoles [311-314], For example, vinyl triflates react with o-aminophenylacetylene to afford an array of 2-substituted indoles in excellent yield, e.g., 356 to 357 [312], and a similar reaction of 358 with aryl iodides leads to an excellent synthesis of 3-arylindoles 359 [313],... [Pg.155]

Rawal s group developed an intramolecular aryl Heck cyclization method to synthesize benzofurans, indoles, and benzopyrans [83], The rate of cyclization was significantly accelerated in the presence of bases, presumably because the phenolate anion formed under the reaction conditions was much more reactive as a soft nucleophile than phenol. In the presence of a catalytic amount of Herrmann s dimeric palladacyclic catalyst (101) [84], and 3 equivalents of CS2CO3 in DMA, vinyl iodide 100 was transformed into ortho and para benzofuran 102 and 103. In the mechanism proposed by Rawal, oxidative addition of phenolate 104 to Pd(0) is followed by nucleophilic attack of the ambident phenolate anion on o-palladium intermediate 105 to afford aryl-vinyl palladium species 106 after rearomatization of the presumed cyclohexadienone intermediate. Reductive elimination of palladium followed by isomerization of the exocyclic double bond furnishes 102. [Pg.285]

This intramolecular Heck cyclization can be extended to diunsaturated aryl iodides, which can undergo two consecutive cyclizations to form polycyclic systems.7 Examples ... [Pg.252]

Germanes are also used for the reduction of various organic halides at ambient temperature under Et3B/C>2 initiation. For example, tri-2-furylgermane mediated radical cyclizations of aryl iodides proceed in good yields (Scheme 6, Eq. 6a) and are also possible with NaBH4 in the presence of a catalytic amount of triphenylgermane (Eq. 6b) [ 16]. [Pg.85]

Another synthetically very promising area deals with the use of allenes in multi-component reactions. For example, the aryl iodide 365 after oxidative addition and cyclization can insert allene (1) to yield the p-allylpalladium(II) species 366. When this is subsequently captured by a secondary amine the functionalized benzo-fused 5-8-membered ring systems 367 are produced in good yield (Scheme 5.54) [157]. [Pg.233]

A convenient preparation of dihydrobenzofurans has been achieved from the appropriately functionalized ort/ o-halophenol derivatives. Treatment of the aryl iodide (5)-33 with (TMS)3SiH and EtsB in the presence of air at room temperature, gave the aryl radical which cyclized in a 5-exo-trig mode and provided the bicyclic derivatives 34/35 as a 29 1 mixture of diastereoisomers in favour of 34 (Reaction 7.40) [51]. [Pg.160]

A few synthetic applications of palladium catalysis appeared this year. The palladium-catalyzed cyclization of amino allenes 58 occurs with coupling of aryl iodides or vinyl triflates at the 3-position <990L717, 99SL324>. The cyclization can also proceed by the exo-trig pathway, but under suitable reaction conditions the piperidine 59 is prepared selectively. The intramolecular cyclization of amines onto N-allylbenzotriazoles similarly affords piperidines <99JOC6066>. [Pg.251]

In a follow-up communication,26 similar chemistry was used for the production of 2-substituted benzofurans beginning not with an anthranilic acid derivative, but with a resin-bound ortho-hydroxy aryl iodide 3. In the solid-phase work, depicted in Scheme 5, the relevant carboxylic acid was linked to TentaGel via a Mitsunobu reaction, and after deprotection was seen to undergo smooth Heck coupling and cyclization, giving essentially pure compounds in 40-70% overall yield after cleavage. [Pg.30]

Ruhland et al. used PdCl2(dppf)-NEt3 Heck conditions to add to a resin-bound aryl iodide, thereby generating supported 4-styryl (3-lactams, as shown in Scheme 17.45 This catalyst system, also found to be effective for the Suzuki reaction (see Section 2.4), is unusual for the Heck reaction and had only previously been used for an intramolecular cyclization.46 The more usual conditions of Pd(OAc)2/phosphine/NEt3 or K2C03 were found to be ineffective. [Pg.39]

Arylboronic acids esterified with support-bound 1,2-diols undergo Suzuki reaction with aryl iodides, whereby biaryls are released into solution (Entry 13, Table 3.46). This technique has also been used to prepare (3-turn mimetics by simultaneous macro-cyclization and cleavage from the support [766]. Alternatively, the C-B bond of a resin-bound boronate may be converted to a C-H bond by treatment with aqueous silver ammonium nitrate (Entry 14, Table 3.46). [Pg.132]

A strategy involving a palladium-catalyzed cyclization/hydride capture process has been used in the synthesis of chiral benzofuran derivatives (Scheme 8G.15) [36], Aryl iodides 15.1 and 15.3 were cyclized under cationic conditions in the presence of HC02Na to give benzofurans 15.2 and 15.4, respectfully, both with good enantioselection. Products resulting from a 6-endo-... [Pg.686]

Palladium(0)-catalysed coupling of non-conjugated dienes, aryl iodides and stabilized carbon nucleophiles has been developed468. An incredibly high yield (86%) of pentacycle 343 has been obtained from a Pd(0)-catalysed zipper reaction of acetylenic pentaene 342. The reaction is triggered off by a Pd-catalysed cyclization of acetylenic bond and the first olefinic bond469. [Pg.1202]


See other pages where Cyclization aryl iodides is mentioned: [Pg.36]    [Pg.26]    [Pg.583]    [Pg.36]    [Pg.26]    [Pg.583]    [Pg.192]    [Pg.25]    [Pg.510]    [Pg.517]    [Pg.143]    [Pg.93]    [Pg.455]    [Pg.157]    [Pg.195]    [Pg.349]    [Pg.420]    [Pg.119]    [Pg.121]    [Pg.1123]    [Pg.121]    [Pg.318]    [Pg.255]    [Pg.796]    [Pg.684]    [Pg.688]   
See also in sourсe #XX -- [ Pg.626 , Pg.627 , Pg.628 ]

See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Aryl iodides

Aryl iodides arylation

Aryl, cyclization

© 2024 chempedia.info