Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl halides radical addition reactions

The addition of the nucleophile to the aryl radical is the reverse of the cleavage of substituted aromatic anion radicals that we have discussed in Section 2 in terms of an intramolecular concerted electron-transfer-bondbreaking process and illustrated with the example of aryl halides. The present reaction may thus be viewed conversely as an intramolecular concerted electron-transfer-bond-forming process. The driving force of the reaction can be divided into three terms as in (131). The first of these, the... [Pg.92]

When aryl halides were applied in catalytic coupling reactions, the mechanistic evidence points to initial SET reduction by low-valent nickel phosphine species (selected investigations in [23, 24]). The competition of cage collapse to ArNi(PR3)2X vs. dissociation of the aryl halide radical anion to a free radical and Ni(I) complexes determines the cross-coupling manifolds. Thus, Ni(0)-Ni(II) and Ni(I)-Ni(III) catalytic cycles can occur interwoven with each other and a distinction may be difficult. Common to both is that the coupling process with aryl halides is likely to occur by a two-electron oxidative addition/reductive elimination pathway. [Pg.326]

The types of compounds that can be polymerized readily by the radical-chain mechanism are the same types that easily undergo free-radical addition reactions. Alkenes with aryl, ester, nitrile, or halide substituent groups that can stabilize the intermediate radical are most susceptible to radical polymerization. Terminal alkenes are generally more reactive toward radical-chain polymerization than more highly substituted isomers. The dominant mode of addition in radical-chain polymerization is head-to-tail. The reason for this orientation is that each successive addition of monomer takes place in such a way that the most stable possible radical intermediate is formed. For example, the addition to styrene occurs to give the phenyl-substituted radical to acrylonitrile, to give the cyano-substituted radical ... [Pg.461]

CO insertion prior to the transmetallation step. The mechanism of nickel-catalyzed coupling reactions is less established. Early studies indicated that homocoupling processes occur by oxidative addition through radical intermediates and possible intermediacy of Ni(I) and Ni(III) complexes. The copper-catalyzed cross-coupling reactions likely occur by transmetallation prior to oxidiative addition of the aryl halide. Iron-catalyzed reactions likely occur by low-valent, even sub-valent, species. [Pg.951]

Radical-mediated silyldesulfonylation of various vinyl and (a-fluoro)vinyl sulfones 21 with (TMSlsSiH (Reaction 25) provide access to vinyl and (a-fluoro)vinyl silanes 22. These reactions presumably occur via a radical addition of (TMSlsSi radical followed by /)-scission with the ejection of PhS02 radical. Hydrogen abstraction from (TMSlsSiH by PhS02 radical completes the cycle of these chain reactions. Such silyldesulfonylation provides a flexible alternative to the hydrosilylation of alkynes with (TMSlsSiH (see below). On oxidative treatment with hydrogen peroxide in basic aqueous solution, compound 22 undergoes Pd-catalyzed cross-couplings with aryl halides. [Pg.131]

In certain cases, Michael reactions can take place under acidic conditions. Michael-type addition of radicals to conjugated carbonyl compounds is also known.Radical addition can be catalyzed by Yb(OTf)3, but radicals add under standard conditions as well, even intramolecularly. Electrochemical-initiated Michael additions are known, and aryl halides add in the presence of NiBr2. Michael reactions are sometimes applied to substrates of the type C=C—Z, where the co-products are conjugated systems of the type C=C—Indeed, because of the greater susceptibility of triple bonds to nucleophilic attack, it is even possible for nonactivated alkynes (e.g., acetylene), to be substrates in this... [Pg.1024]

The addition of aryl radicals, generated by chemical reduction of aryldiazonium salts, onto arenes in the Gomberg-Hey reaction is well established [163]. The addition of these radicals to alkenes in the Meerwein reaction is also well known [164], Aryl o-radicals generated by electrochemical reduction of aryl halides take part in similar reactions. Good yields of the products are obtained when the intermediate phenyl radical can react in an intramolecular manner. The addition step is then fast and competes successfully with further electron transfer to form the phenyl car-banion, followed by protonation. [Pg.128]

Radical carbonylation reaction serves as a powerful tool for the synthesis of a range of carbonyl compounds. Radical carbonylation has been successfully applied to the synthesis of functionalized ketones from alkyl, aryl, and alkenyl halides.The radical aminocarbonylation reaction of alkynes and azaenynes provided efficient routes to 2-substituted acrylamides, lactams, and pyrrolidinones. For example, the aminocarbonylation of 4-pentyn-l-yl acetate 318 initiated by tributyltin hydride (Bu"3SnH) (30mol%) with AIBN (20mol%) gave acrylamide 325 in 92% yield (Scheme 43).A proposed mechanism starts from the addition of tributyltin radical 319 to alkyne... [Pg.549]

Unactivated aryl halides also undergo nucleophilic displacement via electron transfer in the initial step the so-called SRN1 mechanism. It is now clear that in the case of heteroaromatic compounds, nucleophilic substitution by the Srn process often competes with the addition-elimination pathway. The SRN reactions are radical chain processes, and are usually photochemically promoted. For example, ketone (895) is formed by the SRN1 pathway from 2-chloroquinoxaline (894) (82JOC1036). [Pg.283]

C-Alkylations have been performed with both support-bound carbon nucleophiles and support-bound carbon electrophiles. Benzyl, allyl, and aryl halides or triflates have generally been used as the carbon electrophiles. Suitable carbon nucleophiles are boranes, organozinc and organomagnesium compounds. C-Alkylations have also been accomplished by the addition of radicals to alkenes. Polystyrene can also be alkylated under harsh conditions, e.g. by Friedel-Crafts alkylation [11-16] in the presence of strong acids. This type of reaction is incompatible with most linkers and is generally only suitable for the preparation of functionalized supports. Few examples have been reported of the preparation of alkanes by C-C bond formation on solid phase, and general methodologies for such preparations are still scarce. [Pg.171]

The photochemistry of ir-allylpalladium complexes has been studied to a limited extent. Two basic reactions have been observed. Irradiation at 366 nm of ir-allylpalladium complexes produced 1,5-diene dimers, reportedly via a radical coupling mechanism.334 333 Similar irradiations in the presence of species capable of trapping the presumed allyl radical intermediate, such as BrCCb, BrCH2Ph or allyl bromide, now yield alkylated and halogenated allyls, in addition to 1,5-diene dimer. This reaction fails for simple alkyl or aryl halides due to the instability of the associated radical (equations 130 and 131 ).336... [Pg.610]

As to the next step, namely, the reaction of aryl radicals with nucleophiles, we should take into account the fact that air molecular orbital, which initially accommodates the incoming electron, is available in the aryl halide. The electron is subsequently transferred in-tramolecularly from the it to the o molecular orbital of the carbon-halogen bond. Aryl radicals effectively scavenge H atoms. Therefore, an abstraction of a hydrogen atom from the solvent may occur. However, in the case of nucleophiles that can act as effective traps of aryl radicals, the addition of a nucleophile to the phenyl radical takes place. At this point, let us focus on the step of addition of the nucleophile (Y ) to the intermediate radical (Ph). When a new a bond begins to form between the sp3 carbon-centered radical (H5C6) and... [Pg.215]

Radical addition/cross-coupling products 61 were obtained in 60-91% yield when Ni(dppf)Cl2 was applied as a catalyst in reactions of alkyl halides 60 with 2,3-disubstituted dienes 59 and aryl Grignard or arylzinc reagents (Fig. 12). Competition experiments of n-, sec-, and ferf-butyl bromide with 2,3-dimethylbutadiene... [Pg.345]

Several electrochemically mediated Ni-catalyzed addition reactions with aryl halides were reported, but their mechanism is not fully clarified. Using 10 mol% of NiBr2 as a catalyst, heteroaryl halides were added to a, p-unsaturated carbonyl compounds affording (1-aryl carbonyl compounds in 15-86% yield [127]. These addition reactions seem to proceed rather by classical Ni(0)-Ni(II) or Ni(I)-Ni(III) catalytic cycles than by a radical catalysis mechanism. [Pg.354]

Reductive radical cyclization and tandem radical addition/cyclization reactions catalyzed by Ni(II) complexes, such as Ni(cyclam)(C104)2 98a, were studied starting in the 1990s by Ozaki s group [128]. The reaction conditions are applicable to alkyl and aryl halides bearing suitable positioned olefin units. Iodides and bromides can be used in some cases even aryl chlorides were successfully applied. The field was reviewed recently, and thus only more recent results are summarized here [19, 20]. [Pg.354]


See other pages where Aryl halides radical addition reactions is mentioned: [Pg.463]    [Pg.13]    [Pg.931]    [Pg.133]    [Pg.13]    [Pg.172]    [Pg.177]    [Pg.109]    [Pg.44]    [Pg.74]    [Pg.86]    [Pg.219]    [Pg.20]    [Pg.314]    [Pg.168]    [Pg.282]    [Pg.85]    [Pg.1341]    [Pg.212]    [Pg.193]    [Pg.238]    [Pg.392]    [Pg.125]    [Pg.141]    [Pg.193]    [Pg.337]    [Pg.343]    [Pg.351]    [Pg.352]    [Pg.357]   
See also in sourсe #XX -- [ Pg.751 , Pg.752 , Pg.753 , Pg.754 , Pg.755 , Pg.756 , Pg.757 ]




SEARCH



Addition reactions aryl halides

Aryl halides addition

Aryl halides radicals

Aryl halides reactions

Aryl radicals

Halide additives

Halide radical

Halides, aryl, arylation reaction

Radical reaction addition

© 2024 chempedia.info