Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Array flow

Figure 12.10. Component of array fuel cell array flow field (center), clockwise from upper right array MEA, graphite flow field sensor, counter electrode flow field, and assembled cell with multielectrode potentiostat [15]. (Reprinted, with permission, from the Annual Review of Materials Research, Volume 33 2003 by Annual Reviews www.annual reviews.org.)... Figure 12.10. Component of array fuel cell array flow field (center), clockwise from upper right array MEA, graphite flow field sensor, counter electrode flow field, and assembled cell with multielectrode potentiostat [15]. (Reprinted, with permission, from the Annual Review of Materials Research, Volume 33 2003 by Annual Reviews www.annual reviews.org.)...
Diagram showing a flow of ions of m/z a, b, c, etc. traveling in bunches toward the front face of a microchannel array. After each ion strikes the inside of any one microchannel, a cascade of electrons is produced and moves toward the back end of the microchannel, where they are collected on a metal plate. This flow of electrons from the microchannel plate constitutes the current produced by the incoming ions (often called the ion current but actually a flow of electrons). The ion.s of m/z a, b, c, etc. are separated in time and reach the front of the microchannel collector array one set after another. The time at which the resulting electron current flows is proportional to V m/z). [Pg.198]

The arrival of ions at the opening of one of the array elements causes a shower of electrons to pass to the end of the collector, where they are recorded as a current flow, which is usually amplified. [Pg.409]

The magnitude of the current flow is proportional to the number of ions arriving at the array element per unit time. [Pg.409]

Our approach in this chapter is to alternate between experimental results and theoretical models to acquire familiarity with both the phenomena and the theories proposed to explain them. We shall consider a model for viscous flow due to Eyring which is based on the migration of vacancies or holes in the liquid. A theory developed by Debye will give a first view of the molecular weight dependence of viscosity an equation derived by Bueche will extend that view. Finally, a model for the snakelike wiggling of a polymer chain through an array of other molecules, due to deGennes, Doi, and Edwards, will be taken up. [Pg.76]

If we were required to pack beads in a beaker, we know from experience that by jostling the container we could achieve some compaction or decrease in free volume. In fact, we can picture the flow of a huge array of beads through a pipe by considering the beaker as a volume element in that pipe. By vibration, the beads are jostled downward that is, the holes work their way to the top. [Pg.88]

In the derivation of both Eqs. (9.4) and (9.9), the disturbance of the flow streamlines is assumed to be produced by a single particle. This is the origin of the limitation to dilute solutions in the Einstein theory, where the net effect of an array of spheres is treated as the sum of the individual nonoverlapping disturbances. When more than one sphere is involved, the same limitation applies to Stokes law also. In both cases contributions from the walls of the container are also assumed to be absent. [Pg.590]

Motionless inline mixers obtain energy for mixing and dispersion from the pressure drops developed as the phases flow at high velocity through an array of baffles or packing in a tube. Performance data on the Kenics (132) and Sul2er (133) types of motionless mixer have been reported. [Pg.75]

In order to operate a process facility in a safe and efficient manner, it is essential to be able to control the process at a desired state or sequence of states. This goal is usually achieved by implementing control strategies on a broad array of hardware and software. The state of a process is characterized by specific values for a relevant set of variables, eg, temperatures, flows, pressures, compositions, etc. Both external and internal conditions, classified as uncontrollable or controllable, affect the state. Controllable conditions may be further classified as controlled, manipulated, or not controlled. Excellent overviews of the basic concepts of process control are available (1 6). [Pg.60]

Pattemators may comprise an array of tubes or concentric circular vessels to coUect Hquid droplets at specified axial and radial distances. Depending on the pattemator, various uniformity indexes can be defined using the accumulated relative values between the normalized flow rate over a certain sector or circular region and a reference value that represents a perfectly uniform distribution. For example, using an eight-sector pie-shaped coUector, the reference value for a perfectly uniform spray would be 12.5%. The uniformity index (28) could then be expressed as foUows, where is the normalized volume or mass flow rate percentage in each 45-degree sector. [Pg.331]

As for oil and gas, the burner is the principal device required to successfully fire pulverized coal. The two primary types of pulverized-coal burners are circular concentric and vertical jet-nozzle array burners. Circular concentric burners are the most modem and employ swid flow to promote mixing and to improve flame stabiUty. Circular burners can be single or dual register. The latter type was designed and developed for NO reduction. Either one of these burner types can be equipped to fire any combination of the three principal fuels, ie, coal, oil and gas. However, firing pulverized coal with oil in the same burner should be restricted to short emergency periods because of possible coke formation on the pulverized-coal element (71,72). [Pg.526]

A wide array of general-purpose distillation packages are available to the engineer. Some of the distillation software is stand-alone, whereas other packages are a part of a general-purpose flow sheet or process-simulation system. Because distillation is so universal, all process simulators have one or more distillation program modules for this unit operation. Often the nature of the distillation modules determines the suitabiUty of or the preference for the use of a specific simulator for an appHcation. [Pg.78]

Osmotic Pinch Ejfect Feed is pumped into the membrane train, and as it flows through the membrane array, sensible pressure is lost due to fric tion effects. Simultaneously, as water permeates, leaving salts behind, osmotic pressure increases. There is no known practical alternative to having the lowest pressure and the highest salt concentration occur simultaneously at the exit of the train, the point where AP — AH is minimized. This point is known as the osmotic pinch, and it is the point backward from which hydrauhe design takes place. A corollary factor is that the permeate produced at the pinch is of the lowest quality anywhere in the array. Commonly, this permeate is below the required quahty, so the usual prac tice is to design around average-permeate quality, not incremental quahty. A I MPa overpressure at the pinch is preferred, but the minimum brine pressure tolerable is 1.1 times H. [Pg.2037]

The less simple polymers (like the epoxies, the polyesters and the formaldehyde-based resins) are networks each chain is cross-linked in many places to other chains, so that, if stretched out, the array would look like a piece of Belgian lace, somehow woven in three dimensions. These are the thermosets if heated, the structure softens but it does not melt the cross-links prevent viscous flow. Thermosets are usually a bit stiffer than amorphous thermoplastics because of the cross-links, but they cannot easily be crystallised or oriented, so there is less scope for changing their properties by processing. [Pg.228]

Main fuel injector. This unit is designed to deliver a fuel-air mixture to the catalyst that is uniform in composition, temperature, and velocity. A multi-venturi tube (MVT) fuel injection system was developed by GE specifically for this purpose. It consists of 93 individual venturi tubes arrayed across the flow path, with four fuel injection orifices at the throat of each venturi. [Pg.407]

Photodiodes produce an electric field as a result of pn transitions. On illumination a photocurrent flows that is strictly proportional to the radiation intensity. Photodiodes are sensitive and free from inertia. They are, thus, suitable for rapid measurement [1, 59] they have, therefore, been employed for the construction of diode array detectors. [Pg.30]


See other pages where Array flow is mentioned: [Pg.240]    [Pg.103]    [Pg.621]    [Pg.441]    [Pg.240]    [Pg.103]    [Pg.621]    [Pg.441]    [Pg.238]    [Pg.1940]    [Pg.584]    [Pg.88]    [Pg.91]    [Pg.103]    [Pg.585]    [Pg.219]    [Pg.432]    [Pg.473]    [Pg.138]    [Pg.354]    [Pg.389]    [Pg.245]    [Pg.246]    [Pg.373]    [Pg.255]    [Pg.77]    [Pg.160]    [Pg.249]    [Pg.173]    [Pg.1053]    [Pg.157]    [Pg.3]    [Pg.53]    [Pg.65]    [Pg.13]    [Pg.26]   


SEARCH



Array flow concentration changes

Array flow stages

Flow patterns arrays

Longitudinal flow square array

Longitudinal flow triangular array

Photodiode array flow cell design

© 2024 chempedia.info