Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds, reactions hydrocarbons

The technique commercially used for this process is a rapid agitation of two liquid phases, one essentially hydrogen fluoride and one essentially hydrocarbon. The reaction apparently takes place rapidly at the liquid-liquid interface. Reaction also takes place in either of the liquid phases but at a much slower rate. With aromatic compounds reaction takes place rapidly and homogeneously in either a hydrocarbon liquid phase or a hydrogen fluoride liquid phase. [Pg.215]

Nitrations are highly exothermic, ie, ca 126 kj/mol (30 kcal/mol). However, the heat of reaction varies with the hydrocarbon that is nitrated. The mechanism of a nitration depends on the reactants and the operating conditions. The reactions usually are either ionic or free-radical. Ionic nitrations are commonly used for aromatics many heterocycHcs hydroxyl compounds, eg, simple alcohols, glycols, glycerol, and cellulose and amines. Nitration of paraffins, cycloparaffins, and olefins frequentiy involves a free-radical reaction. Aromatic compounds and other hydrocarbons sometimes can be nitrated by free-radical reactions, but generally such reactions are less successful. [Pg.32]

Although limited to electron-rich aromatic compounds and alkenes, the Vilsmeier reaction is an important formylation method. When yV,A-dimethylformamide is used in excess, the use of an additional solvent is not necessary. In other cases toluene, dichlorobenzene or a chlorinated aliphatic hydrocarbon is used as solvent. ... [Pg.282]

Although many of the aromatic compounds based on benzene have pleasant odors, they are usually toxic, and some are carcinogenic. Volatile aromatic hydrocarbons are highly flammable and burn with a luminous, sooty flame. The effects of molecular size (in simple arenes as well as in substituted aromatics) and of molecular symmetry (e.g., xylene isomers) are noticeable in physical properties [48, p. 212 49, p. 375 50, p. 41]. Since the hybrid bonds of benzene rings are as stable as the single bonds in alkanes, aromatic compounds can participate in chemical reactions without disrupting the ring structure. [Pg.312]

Aromatic hydrocarbons, like paraffin hydrocarbons, react by substitution, but by a different reaction mechanism and under milder conditions. Aromatic compounds react by addition only under severe conditions. For example, electrophilic substitution of benzene using nitric acid produces nitrobenzene under normal conditions, while the addition of hydrogen to benzene occurs in presence of catalyst only under high pressure to... [Pg.41]

Hydro-de-diazoniation seems to be an unnecessary reaction from the synthetic standpoint, as arenediazonium salts are obtained from the respective amines, reagents that are normally synthesized from the hydrocarbon. Some aromatic compounds, however, cannot be synthesized by straightforward electrophilic aromatic substitution examples of these are the 1,3,5-trichloro- and -tribromobenzenes (see below). These simple benzene derivatives are synthesized from aniline via halogenation, diazotization and hydro-de-diazoniation. Furthermore hydro-de-diazoniation is useful for the introduction of a hydrogen isotope in specific positions. [Pg.222]

Dicarbonyls. A third area of uncertainty is the treatment of dicarbonyls formed from aromatic or terpene hydrocarbon oxidation. (The simplest is glyoxal, CHOCHO, but a large number have been identified, 47. The yields and subsequent reactions of these compounds represent a major area of uncertainty in urban air photochemistry (186) and since they may be a significant source of HOjj through photolysis, inaccuracies in their portrayal may result in errors in calculated values of HO. and HO2.. [Pg.97]

Considerable attention has been directed in determining the products from reactions of aliphatic hydrocarbons, aromatic compounds, and unsaturated compounds including biogenic terpenes that exhibit appreciable volatility. These studies have been conducted both in simulation chambers and using natural sunlight in the presence of NO. [Pg.17]

The nature of dangerous reactions involving organic chemicals depends on the saturated, unsaturated or aromatic structures of a particular compound. Saturated hydrocarbons are hardly reactive, especially when they are linear. Branched or cyclic hydrocarbons (especially polycyclic condensed ones) are more reactive, in particular as with oxidation reactions. With ethylenic or acetylenic unsaturated compounds, the products are endothermic . [Pg.235]

These intermediates undergo addition reactions with alkenes and aromatic compounds and insertion reactions with saturated hydrocarbons.254... [Pg.946]

Sulfonylnitrenes are formed by thermal decomposition of sulfonyl azides. Insertion reactions occur with saturated hydrocarbons.255 With aromatic compounds the main products are formally insertion products, but they are believed to be formed through addition intermediates. [Pg.947]


See other pages where Aromatic compounds, reactions hydrocarbons is mentioned: [Pg.239]    [Pg.138]    [Pg.42]    [Pg.182]    [Pg.124]    [Pg.551]    [Pg.561]    [Pg.240]    [Pg.449]    [Pg.459]    [Pg.66]    [Pg.3]    [Pg.290]    [Pg.175]    [Pg.77]    [Pg.95]    [Pg.19]    [Pg.98]    [Pg.17]    [Pg.178]    [Pg.385]    [Pg.405]    [Pg.94]    [Pg.256]   
See also in sourсe #XX -- [ Pg.392 ]




SEARCH



Aromatic compounds reactions

Aromatic hydrocarbons, reactions

Hydrocarbons, reactions

© 2024 chempedia.info